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ABSTRACT 
 
 
Network Address Translation (NAT) for IPv4 was 

developed primarily to curb overcrowding of the Internet 

due to dwindling global IP addresses; however, NAT provides 

several other benefits. NAT can be used to mask the 

internal IP addresses of an Intranet. IPv6, the emerging 

standard for Internet addressing, provides three times the 

number of bits for IP addressing. While IPv6 does not need 

NAT for connectivity, other NAT features such as address 

hiding are valuable. There is currently no NAT 

implementation for IPv6. 

The focus of this research was the design and 

development of a NAT implementation for IPv6. This 

implementation will be used within a multilevel testbed. In 

addition, the NAT implementation developed here can 

facilitate the Department of Defense (DoD) transition to 

IPv6 planned for 2008 by providing services currently not 

available for IPv6. 

A working implementation of NAT for IPv6 within the 

Linux kernel has been produced. The NAT development created 

here has been tested for support of the protocols of TCP, 

UDP and ICMP for IPv6. 
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I. INTRODUCTION  

Internet Protocol version four (IPv4), was accepted 

for military network use by the Department of Defense in 

1981. [IP] At the time of its inception, the DARPA Net was 

a connectivity testbed. As it expanded and its popularity 

grew, it became the commercialized Internet still in use 

today. This expansive network is founded on a host-based 

addressing architecture that assigns a 32-bit address to 

each connected system. In the 1980’s, the expandability of 

the 32-bit address used in IPv4 was not a consideration due 

to the limited use of the protocol, primarily for 

government and academic purposes. Now, with the expanding 

growth of the Internet, it is said that the IPv4 address 

space will be outdated by 2010. [NGI] This imminent address 

exhaustion drives the need for a new protocol that will 

allow for a greater number of addresses and a modular 

approach to security. 

Network Address Translation (NAT) was introduced as a 

temporary solution to the rapidly overcrowding address 

space in IPv4. NAT allows an entire network of systems to 

use a single IP address or pool of IP addresses to access 

the external Internet. The NAT mechanism does this by 

replacing the true source address of the internal system 

with the border address in all outgoing datagrams. 

Furthermore, the mechanism tracks the connection between 

internal and external systems in order to maintain 

addressing information for all incoming datagrams. 

Internet Protocol version six (IPv6) is the solution 

to the address space problem. Instead of 32 bits for 

addressing, this new protocol uses 128 bits, allowing for a 
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theoretical maximum of 2128 addresses. Since Network Address 

Translation (NAT) was designed to reduce overcrowding in 

IPv4, many believe that this functionality will not be 

needed with IPv6. The purpose of this thesis is to provide 

evidence that certain benefits provided only by NAT are 

still necessary as well as to create a working 

implementation of it. 

A. PURPOSE OF STUDY 

The popular belief is that since overcrowding is not 

an issue in IPv6, NAT functionality will not be needed. 

However, NAT has two key functionalities aside from address 

space expansion that are beneficial from a security 

perspective. First, by using the NAT mechanism, one is able 

to mask the IP addresses of internal systems. NAT does this 

by replacing the source address of an outgoing datagram 

with another address from a pool of IP addresses or a 

single constant IP address. The NAT device keeps track of 

this connection and alters all incoming datagrams destined 

to the border NAT address to reflect the true internal IP 

address. Second, the NAT mechanism also hides the internal 

structure of an intranet since all connections to the 

Internet must first pass through the NAT border device. 

This forces all external devices to only detect the NAT 

border device: it is not possible to diagram the internal 

topology of the network.  

It is for these security benefits that this research 

is being conducted. The goals of this research are two-

fold. First, the benefits, drawbacks and feasibility of an 

IPv6 NAT implementation were examined. This is advantageous 

to both this thesis in providing direction as well as to 

future research by providing a solid framework of 
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background information, design implementation and future 

recommendations. Second, this project has produced a 

working implementation for NAT over IPv6. This 

implementation was done through a modified Linux 2.6.5 

kernel designed to support connection tracking in IPv6. 

There exist multiple benefits of this research. It 

contributes to the DoD initiative to transition to IPv6 

from IPv4 by FY2008. [MEMO] Also, research conducted into 

IPv6 transition mechanisms will aid the construction of 

hybrid networks that support both IPv4 and IPv6 to ease the 

eventual transition to IPv6. This research also supports 

the Network Centric Warfare (NCW) model and shipboard 

operations by providing the network security benefit of 

address hiding and internal network structure masking. NAT 

can also be used to reduce the cost of leasing a range of 

IP addresses by allowing an entire LAN to operate on as few 

as one leased IP address. Finally, NAT for IPv6 contributes 

to the implementation of high assurance multilevel security 

systems, such as MYSEA, for use by coalitions through its 

application in a multilevel testbed.  

B. OVERVIEW OF CHAPTERS 

This section contains a brief overview of the 

subsequent chapters. 

1. Chapter II, “Network Address Translation Protocol 
in IPv4” 

This chapter provides background information on both 

IPv4 and NAT. The first part discusses the IPv4 protocol 

including general background information, its header 

structure, security issues and the addressing scheme. The 

second part of the chapter is to familiarize the reader 

with NAT by explaining the mechanisms used by the multiple 

types of NAT and the benefits of each. 
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2. Chapter III, “Internet Protocol, Version 6” 

Chapter III explains the background of IPv6 as well as 

its header format, addressing scheme and address 

allocation. This chapter also explores the existing 

security features within IPv6 in addition to emerging 

technologies. Furthermore, it contains a comparison between 

the networking and security features provided by NAT for 

IPv6 and the security features provided by NAT that are 

desired but not provided by IPv6. Finally, this chapter 

describes the existing IPv6 support within the current 

Linux 2.6.5 kernel. 

3. Chapter IV, “Monterey Security Architecture” 

This chapter explains the necessity for systems to 

provide multilevel security and the creation of the 

Monterey Security Architecture (MYSEA) to address those 

needs. It outlines the design of all relevant components 

within the architecture and their implementation within the 

IPv6 NAT testbed.  

4. Chapter V, “Common Criteria Assurance Level 
Exploration” 

Chapter V provides the reader with background 

regarding the Common Criteria. It also describes the 

evaluation process for IT products and explores the 

requirements necessary for an assurance evaluation at EAL5. 

This is done through the framework of the IPv6 NAT 

implementation created in this project. 

5. Chapter VI, “Development of NAT in IPv6” 

This chapter summarizes the development process used 

to implement NAT for IPv6 in conjunction with this thesis. 

It explains the methodology used to port the existing IPv4 

NAT code for use with IPv6. It details the major 

programming difficulties encountered during the porting 
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process and how they were resolved. It also explains the 

debugging process used, as well as functionality testing of 

the resulting implementation. 

6. Chapter VII, “Conclusion” 

Chapter VII gives an analysis of the IPv6 NAT 

implementation as it is integrated within the Linux kernel. 

It also provides design implementation ideas for possible 

future developments. 
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II. NETWORK ADDRESS TRANSLATION IN IPV4 

Network Address Translation (NAT) has served to 

increase available IP address space as originally noted in 

1994 [TNAT].  This chapter contains a summary of current 

NAT implementations and the functionalities provided by 

NAT.  The chapter then examines NAT and related 

functionalities, as implemented in Red Hat 9.0, the Linux 

platform on which NAT for IPv6 will be developed.  Since 

NAT has not yet been developed for IPv6, any reference to 

NAT, unless explicitly stated, refers to NAT for IPv4. 

 

A.  BACKGROUND AND ANALYSIS 

This section presents an overview of IPv4, its 

structure and addressing scheme. This section also provides 

an overview of NAT.   

1. Internet Protocol, Version 4 

a. Background Information 

Today’s current Internet Protocol, Version 4 

(IPv4) was specified in 1981 with RFC 791. [IP] The IP 

protocol resides at layer 3 of the OSI 7-layer model (see 

Figure 1) which is responsible for the management of 

network connections. [OSI]  
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Figure 1.   The OSI 7-layer Model [OSI] 

The purpose of layer 3, or where IP services are 

implemented, was to allow hosts on different network 

topologies to have a standard means of transporting data 

packets to each other across the Internet.  Each host would 

have a unique IP address, almost like a mailing address, to 

distinguish it from all of the other hosts connected to the 

Internet. IPv4 performs two main functions: addressing and 

fragmentation.  The purpose for addressing is obvious 

enough, because without a unique address routers would be 

unable to determine the intended destination for each 

packet.  Fragmentation may not seem as necessary until one 

realizes the myriad of networks and respective standards 

that exist. Ethernet has a maximum transmission unit (MTU) 

size of 1492 bytes, while a Token Ring can be configured to 

have an MTU of 2046. Other layer 2 protocols have other MTU 
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sizes. [MTU] Thus, for a Token Ring packet to traverse an 

Ethernet topology, it must be fragmented into two Ethernet 

packets.  In addition to addressing and fragmentation, IP 

allows for error reporting through the use of the Internet 

Control Message Protocol (ICMP). [ICMP SPEC]   

b. IP Header Structure 

IP headers contain all of the IP addressing, 

transportation, and processing information for each packet.  

The IP header is preceded by a layer two header and 

information dependant upon the networking standard 

(Ethernet, Token Ring, etc.), and is followed by the packet 

payload.  Figure 2 below, from RFC 791, displays an example 

IPv4 header. 

 
    0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3   
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |Version|  IHL  |Type of Service|          Total Length         | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |         Identification        |Flags|      Fragment Offset    | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |  Time to Live |    Protocol   |         Header Checksum       | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                       Source Address                          | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                    Destination Address                        | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                    Options                    |    Padding    | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Figure 2.   IPv4 Header 
 

 The 192 bit header above displays both the 

bit count and the respective field name.  If laid out in a 

sequential, linear fashion the header would read from left 

to right, top to bottom.  What follows is the bit length of 

each field and a description, taken verbatim from RFC 791 

[IP]: 

- Version (4 bits):  The Internet Protocol 

version. 
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- IHL (4 bits):  Internet Header Length; length 

of the header in 32 bit words,  indicating 

where the data begins. 

- Type of Service (8 bits):  Indicates the 

abstract quality of service parameters desired for 

this packet.    

- Total Length (16 bits):  Length of the entire 

packet (including header) in bytes. 

- Identification (16 bits):  A number assigned by 

the sender to help with re-assembling fragmented 

packets. 

- Flags (3 bits):  Control flags; Reserved (must 

be 0), Don’t Fragment (0 means May Fragment), More 

Fragments (0 means Last Fragment). 

- Fragment Offset (13 bits):  Indicates where, in 

the un-fragmented packet, this fragment belongs; 

measured in units of 64 bits, the first fragment 

has offset zero.  

- Time To Live (8 bits):  TTL; indicates the 

number of times a packet may be processed before 

being destroyed; it is decremented by one every 

time it is processed by a host, router, etc.; when 

it reaches zero the packet is destroyed.   

- Protocol (8 bits):  Specifies the OSI layer 

four (next level) protocol in the payload 

following the IP header (ie, TCP, FTP, etc.). 

- Header Checksum (16 bits):  A checksum on the 

IP header only; it is recomputed every time any of 

the header values are altered.   
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- Source Address (32 bits):  IP address where the 

packet came from. 

- Destination Address (32 bits):  IP address 

where the packet is ultimately destined. 

- Options (varies):  Various options for the IP 

packet; its length varies because  many of the 

options have a varying size; the options field may 

require  padding so that it ends on a 32 bit 

boundary.  Below is a list of available  options: 

+ Security – Security and compartmentation 

information 

+  Loose Source Routing – Specifies a route 

that, at some point, must be followed (other 

nodes may be stopped at as well). 

+  Strict Source Routing – Specifies a route 

that must be exactly followed with no other 

nodes stopped at. 

+  Record Route – Record the IP address of 

each node that processes the packet. 

+  Stream ID – Carries a 16-bit SATNET 

stream identifier through networks not 

supporting the stream concept. 

+  Internet Timestamp – Each forwarding node 

inserts a timestamp into this field. 

c. Security 

The IPv4 standard relies on applications and 

upper-level protocols to implement security features.  The 

security option described in the last section only provides 

compartmentalization as a method of security and this is 
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only effective if systems that process the packet adhere to 

the standard.  The protocol allows the options field to 

contain information regarding the intended compartment of 

the packet. This field is for administrative purposes only 

and does not support encryption or data security services. 

However, these labels can support, as noted by the DoD 

Internet Protocol Security Options (IPSO), a classification 

scheme that enables packets to be labeled in a Multi-level 

Secure (MLS) environment. As stated in RFC 1108, this 

labeling system is designed for a classification system 

rather than a cryptographic system. [DoD SOIP] 

d. Addressing 

IP addresses are 32 bits long and can be 

represented in either bitwise or dotted-decimal notation.  

Figure 3 gives an example of this: 

 
10000000.00001111.11111111.00000000 = 128.15.255.0 
 

Figure 3.   Bitwise / Dotted-decimal 
 

By using 32 bits for its address space, IPv4 is 

limited to slightly more than 4.2 billion unique IP 

addresses, which at the time of its conception was thought 

to be sufficient; however, the world-wide Internet boom 

quickly depleted IP addresses to the point that solutions 

to the dwindling number of addresses had to be found.  IPv4 

has a addressing scheme that declared networks to be of 

three different sizes, or classes.  Class A networks, the 

largest but also the least abundant, use the first 8 bits 

of the 32 addressing bits for network identification and 

the last 24 bits for host identification.  Class B networks 

use the first 16 bits for network identification, while 

Class C networks use the first 24 bits. [IP]  
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Unfortunately, this scheme wastes addresses.  Assume, for 

example, that a software company is given a class C address 

for its 100 computers.  This would leave 156 IP addresses 

unused by the company.  To prevent such waste, IPv4 also 

uses a classless addressing scheme, which essentially 

creates networks using any number of leading bits through a 

subnet mask.  The subnet mask allows the class to be 

partitioned by reserving a portion of the host address to 

reference the underlying subnets created by the division of 

the address space.  Another important aspect of the IPv4 

addressing scheme, defined by RFC 1918 [AAPI], is the 

reservation of certain ranges of addresses for private 

networking.  These private network addresses are not 

routable and cannot be used on the Internet, but may be 

duplicated amongst any separate private networks.  This is 

the basis for the concept of NAT. There can be a seemingly 

infinite number of networks with reserved address ranges 

provided they are known to the public Internet by a 

routable, global IP address or addresses.  Figure 4 shows 

the standard private IP address ranges that are not 

globally viable:   

 
 

Class A (private):  10.0.0.0 – 10.255.255.255 
Class B (private):  172.16.0.0 – 172.16.255.255 
Class C (private):  192.168.0.0 – 192.168.255.255 

 
Figure 4.   Private IP Address Ranges [AAPI] 
 

2. Network Address Translation 

According to RFC 2663 [IPNATTC], “The term ‘Network 

Address Translator’ means different things in different 

contexts.”  This section will cover many of the different 
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forms and uses of NAT and will focus on basic NAT, since it 

will be implemented in the thesis development. 

a. Basic NAT 

RFC 3022 [TNAT] specifies what most people refer 

to when they use the term NAT.  NAT was introduced as a 

short-term solution to the Internet address space crowding 

until long-term solutions with larger address spaces were 

accepted.  Its operation depends on adherence to the 

private/public IP addressing scheme and the placement of 

NAT functionality on all network devices that form the 

border between the local area network using private IP 

address space and the Internet.  The local, private 

addresses can be re-used by any other local area networks 

not directly connected to the same border device, while the 

global addresses are unique to the Internet.  Besides the 

primary advantage of effectively alleviating the strain on 

the IP address pool, NAT also hides the local area network 

topology (see Figure 5) from outside hosts.  According to 

RFC 3022, NAT also “takes advantage of the fact that a very 

small percentage of hosts in a stub domain [(local area 

network)] are communicating outside of the domain at any 

given time.”   
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Figure 5.   IPv4 NAT Diagram 

What follows are the core steps to a basic NAT 

translation, also referred to as traditional NAT or 

outbound NAT, which only allows connections to be initiated 

from the inside: 

(1) Address assignment - NAT devices bind 

globally unique and locally re-usable IP addresses at the 

beginning of a network connection to the address fields of 

IP packets.  At this point, there are two possible 

scenarios depending on whether the particular session is 

receiving a static or dynamic address assignment.  In the 

case of static address assignment, the NAT device merely 

looks up the pre-determined private/public address mapping 

in its routing table and assigns IP addresses accordingly.  

In the case of dynamic address assignment, the NAT device 

selects a globally unique IP address from its address pool, 
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maps it to the local IP address and stores the connection 

pairing in its NAT table. 

(2) Address translation and lookup - 

Anytime an outbound packet crosses the NAT device, the 

source/destination IP address pair is looked up in the NAT 

table to see if connection information exists.  Once 

connection information is either found or created (for new 

sessions) the NAT device strips the private IP address off 

of the packet and replaces it with a globally unique 

address.  Additionally, the NAT device must recalculate the 

IP checksums, as well as, other fields that relate to the 

original source/destination IP address.  Incoming packets 

have the selected global IP address as the destination 

address. For these packets, the NAT device looks up the 

globally unique IP address in the NAT table to determine 

the corresponding local area network host, and forwards it 

with the proper header modifications.  All of these address 

translations are intended to occur transparently to any of 

the hosts engaged in a session.  However, RFC 2663 states 

that “the NAT function cannot by itself support all 

applications transparently and often must co-exist with 

application level gateways (ALGs) for this reason.” 

[IPNATTC]  Note that IPSec techniques that protect the 

contents of IP headers and are intended to preserve 

endpoint addresses of an IP packet cannot function with 

NAT, as NAT’s primary role is to alter the IP address of an 

IP packet.  NAT will, however, work with Virtual Private 

Networks (VPNs) and tunneling schemes that can tolerate the 

alteration of the IP address fields.   

(3) Address unbinding - A NAT device may 

detect that communication between the local and remote 

hosts has halted for some given amount of time using 
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various heuristics. When this happens, the NAT connection 

expires for the corresponding address pair.  The globally 

unique address is returned to the pool of available 

addresses for use with another mapping.  New session 

pairings will have to be assigned to all new connections as 

they are encountered.   

This basic series of events is what most people 

refer to when they use the term NAT, however, there are 

many NAT variants. 

b. Network Address Port Translation (NAPT) 

This NAT mechanism extends the concept of IP 

address translation mappings to include the transport layer 

ports.  NAPT allows multiple sessions from multiple private 

hosts to be mapped onto one globally unique IP address by 

keeping track of the port numbers associated with the 

global address.  Essentially the mappings contained in the 

NAT table are expanded to include the port number in 

addition to the IP address pair. This mechanism allows more 

unique combinations, thereby allowing multiple private 

hosts to access the Internet using one global IP address.  

For example, three different private IP hosts wish to start 

an HTTP session with an outside server.  The NAT device 

would map each session to a specific IP/port pairing and 

store them in its NAT table.  An example of a NAPT mapping 

using one globally unique IP address can be seen in Figure 

6. 
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Private IP Address mapped to Globally Unique IP 
Address/Port Combination 

 
192.168.0.1:80 =>   60.60.60.60:2500 
192.168.0.1:23 =>   60.60.60.60:6489 
192.168.0.249:80 =>  60.60.60.60:2502 
10.255.255.255:1024 =>  60.60.60.60:5009 
 

Figure 6.   NAPT Example 
 

NAPT is a common instance of NAT that is used by 

many users to setup home networks using the single IP 

address provided by their Internet Service Provider.  NAPT 

can also be used in conjunction with traditional NAT to 

further increase the amount of usable global space.  For 

example, assume that a network has two globally unique IP 

addresses, by using NAPT, the network now has 2 (IP 

addresses) * 65535 (ports per IP address) = 131070 unique 

session mappings available. 

c. Bi-directional NAT 

Also known as two-way NAT, bi-directional NAT 

allows sessions to be initiated from outside of the private 

network, as well as, from the inside.  Bi-directional NAT 

employs a Domain Name Service – Application Level Gateway 

(DNS-ALG) that alters DNS packets to reflect any static or 

dynamic address mappings the NAT device will or has made.  

When an outside host wishes to initiate a session with an 

internal host, it sends a DNS query that ultimately reaches 

the internal host DNS server, which returns a DNS reply.  

If the internal host has either a statically mapped IP 

address or both a statically mapped IP address and a port 

enty, the DNS NAT device forwards the DNS reply.  

Otherwise, the DNS reply is altered by the DNS-ALG and the 

NAT device to reflect a dynamic mapping that the NAT device 

supplies as the IP address of the internal host.  Since the 
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mapping has been made, the external host may now initiate a 

session with the internal host via the returned address, 

assuming the reply occurs before the session information is 

purged from the routing tables. 

d. Twice NAT 

Twice NAT modifies both the source and 

destination address of an IP packet whenever it passes 

through the NAT device.  This is necessary when a private 

network (improperly most of the time, sometimes on purpose) 

labels one or more of its internal nodes with public IP 

addresses officially assigned to other networks.  The 

reasons for this address misuse vary, but the result is 

that a conflict arises when a host from the offending 

network must communicate with the public network.  Because 

of the duplication in IP addresses, the packet is forwarded 

to another local host instead of the public host.  Twice 

NAT attempts to solve this problem by altering both the 

source and destination address as the packet travels.  

Figure 7 gives a snapshot example of twice NAT.  
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Twice NAT Configuration: 
Private to Public:  200.200.200.0/24 => 138.76.28.0/24 
Public to Private:  200.200.200.0/24 => 172.16.1.0/24 
  
 Datagram flow:  Private => Public 

a) Within private network 
Dest.Addr.: 172.168.1.100   
Src.Addr.:  200.200.200.1 

b) After twice-NAT translation 
Dest.Addr.:  200.200.200.100   
Src.Addr.:  138.76.28.1 

 
 Datagram flow:  Public => Private 
 a)Within public network 
   Dest.Addr.:  138.76.28.1 

     Src.Addr.:  200.200.200.100 
 b)After twice-NAT translation, in private network 

Dest.Addr.:  200.200.200.1   
Src.Addr.:  172.16.1.100 

Figure 7.   Twice NAT Example [IPNATTC] 
 
 

e. Multihomed NAT 

This terminology refers to the concept of using 

multiple NAT border devices in a network.  For NAT to be 

effective it must process all packets being sent to the 

internal network, essentially creating a single point 

through which all external communications must pass.  Users 

quickly realized that this created a bottle neck in 

traffic, as well as a single point of failure for the 

network with respect to external connectivity.  Multihomed 

NAT enables a private network to have several exits to 

external networks, which allows for redundancy in 

communications and better use of routing efficiency 

algorithms.  This approach requires that all NAT devices 

maintain the same routing information. Otherwise packets 

will be incorrectly dropped, routed inefficiently, or have 

duplicated session entries in the tables.  Methods for NAT 
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information exchange vary, but all produce the same result: 

all NAT boxes have the same tables. 

B. NAT IN THE LINUX OS 

Because the chosen platform for this thesis is Linux 

Red Hat 9.0, it is important to understand how NAT 

functions within the Linux 2.6.5 kernel.  This section will 

examine the primary packet monitoring mechanism within the 

kernel, netfilter, and both the kernel-space and user-space 

code of the iptables implementation that supports NAT. 

1. Netfilter 

To understand NAT within the Linux OS, it is important 

to have a broad picture of what happens to a packet 

entering a Linux system.  A packet entering a network 

interface on a Linux computer goes through a series of 

“sanity checks” which include packet checksum, destination 

(if it is, in fact, destined for this computer), etc. in 

order to determine if what is received is a valid packet.  

Any packet failing these checks is dropped.  Following 

these sanity checks is the first instance of a netfilter 

hook.  Effectively, “netfilter is a set of hooks inside the 

Linux 2.4.x kernel’s network stack, which allows kernel 

modules to register callback functions called every time a 

network packet traverses one of those hooks.” [MOSIX]  In 

essence, each hook provides an opportunity for a kernel 

module to look at and manipulate the packet before it 

continues (or is dropped) down the routing chain.  This 

approach provides more modularity than implementing both 

netfilter and the underlying NAT code as a monolithic block 

of kernel code. The layering is inherent in the setup of 

“kernel to netfilter to iptables processing stack“ and 

since the traversal of the netfilter hooks and queues is 

linear, any introduction of a looping problem would be the 
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result of poorly written code.  Each netfilter hook 

contains a prioritized list (it may be empty) of the kernel 

modules that must access the packet when the hook is 

activated.  The netfilter hooks accept the following return 

codes from the processes, following any alterations the 

process may chose to do:  NF_DROP (drop the packet), 

NF_ACCEPT (keep the packet), NF_STOLEN (keep the processor 

and memory resources for the packet, but the process will 

handle the packet so netfilter can forget about it), 

NF_QUEUE (queue the packet for userspace processing).  

These hooks are used by iptables to allow other kernel 

space programs the ability to view or alter a packet.  

Iptables is the built-in packet manipulation mechanism 

that processes packets according to a set of user-defined 

rules. The first netfilter hook, following the sanity 

checks, is the NF_IP_PRE_ROUTING hook, during which 

connection tracking, packet mangling, and destination NAT 

occur in that order.  Connection tracking looks at the 

destination and source address fields of the packet and 

records them in a table for a certain amount of time.  

Other programs desiring to determine what connections are 

active can access this information through the connection 

tracking mechanism.  Packet mangling is essentially a 

sequentially traversed table of rules that are applied to 

packets to allow kernel space programs the ability to 

manipulate certain fields of a packet.  For instance, one 

could use the mangling table to perform static NAT by 

instituting a rule that forwards all packets with a 

specific globally unique IP/port address to a specific 

private IP/port address.  Destination NAT (DNAT) modifies 

the destination IP address of all incoming packets using 
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the nat table to determine the proper IP and/or port 

mappings.  Variations of DNAT include redirection (back to 

the incoming interface), port forwarding (multiple 

servers), and load sharing.  There is a good excerpt from 

Paul Russell and Harald Welte’s “Netfilter Hacking HOWTO” 

that describes what happens whenever the NAT code is 

called: 

“Anyway, the first thing the NAT code does is to 
see if the connection tracking code managed to 
extract a tuple and find an existing connection, 
by looking at the skbuff's nfct field; this tells 
us if it's an attempt on a new connection, or if 
not, which direction it is in; in the latter 
case, then the manipulations determined 
previously for that connection are done. 

If it was the start of a new connection, we look 
for a rule for that tuple, using the standard 
iptables traversal mechanism, on the `nat' table. 
If a rule matches, it is used to initialize the 
manipulations for both that direction and the 
reply; the connection-tracking code is told that 
the reply it should expect has changed. Then, 
it's manipulated as above. 

If there is no rule, a `null' binding is created: 
this usually does not map the packet, but exists 
to ensure we don't map another stream over an 
existing one. Sometimes, the null binding cannot 
be created, because we have already mapped an 
existing stream over it, in which case the per-
protocol manipulation may try to remap it, even 
though it's nominally a `null' binding.” 

After all of this occurs at the first netfilter hook, 

including the previous connection tracking and packet 

mangling, the packet then enters “the routing code, which 

decides whether the packet is destined for another 

interface, or a local process.  The routing code may also 

drop packets that are unroutable.”(Russell and Welte)  If 

the packet is an incoming packet, a second netfilter hook, 
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NF_IP_LOCAL_IN is called.  This hook again allows kernel 

modules, namely iptables, the ability to manipulate and 

examine the packet based on information obtained from rules 

within the filter, conntrack, and mangle tables.  At this 

point the incoming packet is passed off to other kernel 

modules and is no longer under control of the netfilter 

mechanism.  If a packet is forwarded to be sent out of the 

computer, a third netfilter hook called NF_IP_FORWARD is 

initiated which allows packet mangling and filtering, as 

well as any other registered processes.  From here, a 

fourth netfilter hook, NF_IP_POST_ROUTING, is initialized 

which allows packet mangling, source NAT (SNAT), and the 

connection tracking mechanism to access the packet.  Again, 

as is the case with all of the netfilter hooks, any kernel 

module can access the packet at this point if they have 

registered callback functions with the NF_IP_POST_ROUTING 

hook prior to the arrival of the packet.  The only other 

netfilter hook occurs when a packet originates locally and 

is destined to leave the system via the local network.  

NF_IP_LOCAL_OUT is called which allows conntrack, mangle, 

DNAT, and filter to work on the packet.  The packet is then 

routed and triggers the NF_IP_POST_ROUTING hook mentioned 

previously.  At each point in the netfilter architecture 

where NAT occurs, namely the prerouting, postrouting and 

output hooks, the aforementioned processing steps are 

repeated. To summarize, NAT checks with the connection 

tracking mechanism to see if a connection for the 

particular IP address pair has existed before, and if so, 

applies the proper rules.  If not, the nat table is checked 

for rules and if a NAT rule for that address pair exists, 

it is applied to the originating packets and its expected 

reply packets.  Finally, if there is no correlated rule in 
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the nat tables, the originating packet and replies are 

assigned a null binding to prevent multiple mappings for a 

single session.  Figure 8 provides a graphical 

representation of the above proceedings. 

 
Figure 8.   Netfilter Packet Flow [LNF] 

  

2. Kernel-Space Iptables 

The kernel-space iptables code, ip_tables.c, and 

related code work together to form the engine for table 

traversal and packet manipulation within netfilter.  

Whenever a packet reaches a netfilter hook, iptables is 

invoked in order to traverse each of its tables to 

determine if there are kernel modules that are scheduled at 

that hook and, if a rule exists, for that kernel module to 

gain control of the packet.  To do this, iptables invokes 

get_entry() with the IP fields and the table to be 
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traversed as arguments.  Once a rule is returned, iptables 

then invokes other kernel modules specific to the 

particular table in order to perform the requested 

operations.  For example, when a packet passes the 

netfilter pre-routing hook, destination NAT might be 

necessary.  Iptables is called, with parameters including 

packet information from connection tracking and which table 

it is to traverse. At this point, iptables checks the nat 

table to see if a rule exists.  If a rule does exist, 

iptables calls another function to perform destination NAT 

using the rule it found in the table.  Should there not be 

any rule for the given packet, a null-session is assigned 

and nothing happens to the packet itself.  These steps are 

repeated for all tables scheduled at the netfilter 

prerouting hook.  The advantage of having a kernel-space 

mechanism for performing these packet manipulations is that 

its priority within netfilter for accessing the packet can 

be compiled into the kernel so that, if configured to do so 

at runtime, iptables can be assured the first action on an 

incoming packet instead of a user-space process outside of 

the kernel.   

3. User-Space Iptables 

The user-space iptables code supports user interation 

with the kernel-space iptables engine.  Iptables is a 

command-line interface used to set various flags and rules 

used by kernel-space iptables. It then performs the 

requested action on the specified table.  User-space 

iptables can perform any number of operations, such as 

listing all of the rules of a certain table, deleting a 

user-created table, deleting a rule within a table, 

appending a rule to a table, etc.  It is important to note 

that the user-space iptables and the kernel space iptables 
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share the same set of tables.  Since the kernel-space 

iptables code needs to continuously access the tables in 

order to traverse them and apply their rules, a serious 

conflict would arise should the user-space process write to 

a table at the same time as the kernel-space process is 

traversing it looking for rules. A locking mechanism is 

employed to avoid such a conflict.  When accessing the 

tables to perform a requested operation, the user-space 

iptables locks the tables, preventing any other process or 

the kernel from accessing them.  Should the kernel-space 

iptables attempt to access the table while it is locked, 

the kernel-space iptables would return an NF_DROP value to 

netfilter causing the packet to be dropped so that it will 

have to be re-sent. Similarly, the kernel-space iptables 

would use the same lock to gain exclusive access to the 

tables. 

C. MODULE SEQUENCE MAPPING 

To better understand what happens in the iptables 

code, both kernel and user-space, it was necessary to 

inject tracing code into the original Linux source code and 

recompile.  What follows is a description of what was 

injected and the results.   

1. Kernel-Space Trace 

Rather than writing completely new modules to perform 

a trace of what happens in the kernel space when a packet 

comes in, the debugging system already in place was used.  

Kernel debugging is essentially performed by a switch at 

the beginning of the code that turns debugging on or off.  

When debugging is turned on, various printk() statements 

become active and send debugging messages to the kernel 

logfile.  The printk() statements used in this trace were 

customized to output the file and function that they were 
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located in, and were put into every function of every file 

in the /usr/src/linux2.4/net/ipv4 directory.  When 

implemented, this produced too many debugging statements 

and filled up the logfile too quickly to produce any useful 

results.  The reason for this is that the 

/usr/src/linux2.4/net/ipv4 directory contains the core 

TCP/IP stack that is touched every time a packet enters the 

NIC. What was desired was the ability to trace everything 

that would be used within the connection tracking, 

iptables, and NAT processes.  Realizing this, the kernel 

debugging was turned off for everything in the  

/usr/src/linux2.4/net/ipv4 folder except for everything in 

the subdirectory /netfilter.  All of this was implemented 

on the Trusted Path Extension (TPE) computer within the 

MYSEA network.  (More information on the network topology 

will be presented in Chapter 4)  After successfully adding 

code to the kernel and recompiling it, the ICMP echo 

request and reply message generated by a ping command were 

successfully sent from the client machine, through the TPE, 

which was NAT enabled, to the server machine, and back 

again.  NAT performed the necessary packet translations in 

both directions and successfully forwarded the packet.   

The results from the kernel logfile indicated several 

things.  First, that connection tracking accounted for 

almost all of the function calls throughout the process.  

Second, that ip_tables.c was only called twice during the 

entire process, and both times were actually during the 

outbound portion of the ping.  The first call is to check 

for a specific instance of this session, which has not been 

established yet, and the second call is to record the 

session mapping that the NAT code has performed.  At both 
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points ip_tables.c calls the functions ipt_do_table() and 

get_entry().  Third, it appears that with return packets, 

NAT already knows the bindings it must perform for this 

specific IP mapping, and therefore does not need to call 

any functions from ip_tables.c.  Fourth, if another ping 

packet is sent after this one, before the session mapping 

is unbound, iptables.c is only called once, because it 

finds the session mapping on its first try.  To see a 

graphical representation of the logfile results from this 

test, and the actual logfile results, see Appendix D. 

2. User-Space Trace 

Another key to understanding the operation of 

iptables, in general, is to understand how the user-space 

iptables operates.  In order to gain a better understanding 

of how this part of iptables works, it was again necessary 

to insert tracing code into the user-space source code, 

recompile the user-space iptables, and perform some basic, 

NAT-related commands to see what occurs.  The tracing code 

consisted of 4 lines of code inserted into every function 

of every file of the user-space iptables code.  These lines 

of code declared an input file, opened it, used fprintf() 

to send the file and function information, and closed the 

file.  This method worked well and did not cause any 

compilation problems.  One drawback was that it was 

difficult to separate the different commands, so it was 

necessary to manually annotate the output file after every 

command in order to separate the actions.  The results were 

fairly simple.  Whenever a table was manipulated via the 

command line interface, almost all of the functions called 

within iptables involved converting the user-friendly 

information into a more machine-friendly format.  The 

process then calls functions to allocate memory space and 
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generate the entry in proper format.  Finally, depending on 

the exact nature of the command, its operating function is 

called.  For example, if the NAT table was to have an entry 

appended onto it, after a large amount of formatting and 

some information processing, the actual append_entry() 

command is called.  An important feature is that, within 

the final commands, just before a table is actually written 

to, it is locked to prevent simultaneous access by both the 

user-space and kernel-space iptables. 
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III. INTERNET PROTOCOL, VERSION 6 

This chapter contains a summary of the IPv6 structure 

and functionality as it applies to this thesis. Background 

information regarding the protocol is presented through the 

analysis of relevant RFC’s and supporting academic 

research. The application of the protocol to our thesis is 

explained and a comparison between NAT functionalities and 

those of the IPv6 protocol is examined. Finally, the 

current application of this protocol in the Linux kernel is 

explained. 

 

A. BACKGROUND AND ANALYSIS 

This section examines the history and structure of the 

IPv6 protocol. It also describes the IPv6 addressing scheme 

and address allocation. 

1. Introduction 

The growing demand for interconnectivity and the 

increasing consumer desire to have more devices wired, 

drove the creation of the next version of the Internet 

protocol. IPv6 addresses are 128-bits long. This is 4 times 

longer than the standardized IPv4 addresses currently in 

use. This is 296 times the size of the IPv4 address space, 

allowing for hundreds of billions of additional addresses. 

Moreover, the most stringent studies regarding the 

efficiency of addressing architectures predicts that the 

protocol will be capable of “accommodating between 8 x 1017 

and 2 x 1033 nodes” [IPng] if the IPv6 addressing 

architecture efficiency is comparable to that of the IPv4 

addressing architecture. 
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Figure 9.   IPv6 Header [ACM IP6] 
 
 

What follows is the bit length of each field and a 

description, taken verbatim from RFC 2460 [IP6 SPEC]: 

- Version (4 bits) : Internet Protocol version 

number = 6 

- Traffic Class (8 bits) : Used to identify and 

distinguish between different classes or 

priorities of IPv6 packets 

- Flow Label (20 bits) : Used by a source to 

label sequences of packets for which it 

requests special handling by the IPv6 router 

- Payload Length (16 bits) : Length of the IPv6 

payload, i.e., the rest of the packet following 

the IPv6 header, in octets. (Extensions are 

included in this number) 
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- Next Header (8 bits) : Identifies the type of 

header immediately following the IPv6 header 

- Hop Limit (8 bits) : Decremented by 1 by each 

node that forwards the packet. Similar to the 

time to live (TTL) field in IPv4 

- Source Address (128 bits) : Address of the 

originator of the packet 

- Destination Address (128 bits) : Address of the 

intended recipient of the packet 

In the IPv6 addressing scheme, there are three 

different types of addresses: unicast, anycast and 

multicast. Noticeably, the multicast address has updated 

the broadcast function used in IPv4. The unicast address 

allows packets to be sent to an interface at a single 

address. This is used when the address is targeting a 

specific, known location. Anycast is an address that is 

assigned to multiple interfaces and the packet with an 

anycast address is sent to the most easily accessible 

(“closest”) node. This addressing format is useful when a 

client needs to get a packet to the closest available 

server. The multicast address also identifies a set of 

interfaces; however, in this mode, the packet is sent to 

all interfaces identified by a specific address. This 

flexibility in addressing allows a single machine to have 

multiple IPv6 addresses of varying types. [IPng]  

The increased address length and the number of extra 

nodes permitted by it present the subsequent problem of 

domain name resolution and address lookup. Currently, when 

an IP router receives a packet, the router must determine 

what routing subnet in its database most closely matches 
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the incoming packet. It then routes the packet to the 

appropriate destination. With the address size increasing 

so dramatically, this method of packet forwarding quickly 

becomes time and memory intensive. A solution to this 

problem has been proposed in a collaborative effort between 

the University of Washington and ETH Zurich in Switzerland. 

This improved method creates a hash table of prefix lengths 

and performs a binary search. It is claimed that the search 

method results in an “order of magnitude performance 

improvement” [IPROUTE] due to only seven hash lookups 

needed for a 128-bit address. 

2. Packet Header Format 

The number of fields in the IPv6 header is greatly 

reduced compared to the IPv4 header, thus making it simpler 

and more reliable. The header in an IPv6 packet (see Figure 

9) includes information about the version, the priority, 

the flow label, the payload length, the next header, the 

hop limit and the source and destination addresses. This 

header significantly reduces the amount of overhead that 

existed in IPv4 (see Figure 2), by removing the 

differentiated services byte, IP header length, the 

identification field, the flag, the fragment offset, the 

time to live (TTL) and the header checksum field. Removing 

all of these fields allows IPv6 to include a larger source 

and destination address without radically increasing the 

time spent on transmitting and receiving the header. [IPng] 

Though the IPv6 header is less complex, its design has 

allowed for the relatively simple addition of extension 

headers or footers. These additional headers can serve many 

purposes and allow for future development of the protocol. 

Currently, the following headers are being used according 
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to RFC 2460, “Internet Protocol, Version 6 (IPV6)”: Hop-by-

Hop Options, Routing, Fragment, Destination Options, 

Authentication Header (AH) and Encapsulating Security 

Payload (ESP). [IP6 SPEC] It is easily conceivable that 

future headers will provide more functionality than 

currently available headers and be just as easy to 

implement. 

3. Addressing Scheme 

The primary benefit of IPv6 is the increased address 

space. Instead of only using 32 bits in the header for a 

source or destination address, IPv6 uses 128 bits per 

address. Considering the new address space, a new address 

formatting scheme had to be introduced. Basically, there 

are three methods of expressing an IPv6 address. The first 

and most standard form is the following: 

xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx, where each x is a 

hexadecimal digit. Thus, an example of a typical IPv6 

address is the following:  

 

94AD:1283:BE45:9E23:FFE4:72A6:820F:7A4B. 

 

The second method to describe IPv6 addresses is used 

when there are leading zeros within an octet or several of 

the middle octets are zero. In these cases, the leading 

zero can be omitted from the octet. Or, in the case of 

several octets being zero, the octets can be omitted and 

replaced with a double colon. Note that the double colon 

can only be used once within the address, denoting one or 

multiple octets that are all zero. 

 

An example of this method is the following: 
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94AD:1283:0040:9E23:0009:72A6:820F:7A4B 

94AD:0000:0000:0000:0000:0000:0000:7A4B 

 

The above may be expressed as: 

94AD:1283:40:9E23:9:72A6:820F:7A4B 

94AD::7A4B 

 

The following address is not valid: 

94AD::ABCD::7A4B 

 

Finally, the third method is used for addresses that 

are used to transition from the IPv4 protocol to the IPv6 

protocol or to maintain both addresses at the same time. 

This format essentially allows the last two octets to 

represent the old IPv4 address while the first six octets 

represent the new IPv6 subnet.  

 

For instance, the following IPv4 address: 

192.168.100.100 

 

Could be translated to IPv6 with the following 
address: 

94AD:1283:BE45:9E23:FFE4:72A6:192.168.100.100 

 

Notice that after the sixth octet, the notation 

transitions from the separating colons to the current IPv4 

standard of dot notation. This format in particular will be 

imperative in the transition from IPv4 to IPv6. Given the 
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proper routing mechanisms, it will allow hosts to maintain 

sites for both protocols with relative ease.    

4. Address Allocation 

Just as in IPv4, IPv6 has allocated its address space 

through the acceptance of the initial designation presented 

in RFC 3513 [IP6 ADDR]. This allocation is a remarkable 

paradigm for future planning. As one can see in Table 1 

below, the majority of addresses are unassigned and 

available for public use. However, a large number of 

addresses, proportional to IPv4, are reserved for future 

protocol use, link-local, site-local and multicast use. 

 

Table 1.   IPv6 Address Space Allocation [NGIP] 
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B. SECURITY 

This section will examine the security functionality 

inherent in the IPv6 protocol as well as the additional 

headers available that enhance security. 

1. Existing Security Mechanisms 

At the time IPv4 was accepted, the security threat to 

packet transmission and reception was minimal. Thus, very 

little was built into the IPv4 architecture to protect it 

from threats like Man-in-the-Middle attacks, where an agent 

intercepts message traffic between two clients; or 

masquerading, where an agent masks his true identity with a 

false one in order to gain access to a system. IPv6 has 

incorporated three main deterrents for the previously 

mentioned attacks, an Authentication Header (AH), 

Encapsulating Security Payload (ESP), and Internet Key 

Exchange (IKE). The AH provides authentication and 

integrity both to the end client and forwarding server. It 

is able to do this by creating a cryptographic hash of the 

packet. If the hash is invalid upon receipt by the end 

client, the user knows the packet has either been tampered 

with or was not successfully transmitted. Using ESP, an 

authenticator is placed at the end of the packet. It uses 

the same hash mechanism as AH, however it also encrypts the 

payload data and the primary source and destination 

address. This conceals the payload of the packet to 

intermediate servers, giving extra security to the packet 

against a Man-in-the-Middle attack. This mode of packet 

transportation is known as tunneling mode transmission. 

Finally, the IKE follows the same principles as Kerberos. 

[KERB] A private key is encrypted with the end user’s 

public key, the packet is sent and then decrypted with the 

sender’s public key. [NGI] 
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2. Emerging Technologies 

Packets are sent from node to node, eventually ending 

at the specified destination address. A router is only able 

to send packets to IP addresses that are stored in its 

routing table. Neighbor and router discovery and the 

sharing of routing information from those routers generate 

this table. A security concern arises in this situation due 

to the damaging potential that the unknown routers being 

queried might supply malicious routing information. Two 

emerging security methods for IPv6 neighbor and router 

discovery are Cryptographically Generated Addresses (CGA) 

and Address Based Keys (ABK). In CGA, the lower 62 bits of 

an IP address are used to “store a cryptographic hash of 

the public key.” [NRD]  To identify a CGA encrypted 

address, both bits 6, the universal/local bit, and bit 7, 

the individual/group bit, are set to one. The cryptographic 

hash of the server’s public key allows the client to send 

an encrypted public key to be used in coordination with the 

server’s private key, instead of sending the public key “in 

the clear.” Using ABK, the user’s private key is used to 

generate a digital signature and is placed in the lower 64 

bits of the header. The end client then verifies that 

portion of the header using a public key to decrypt it. 

[NRD]   

C. FEATURES PROVIDED BY NAT FOR IPV6 

The following section is an examination of the 

benefits of NAT for IPv6 and how they apply to this thesis 

and the MYSEA architecture. 

1. Address Hiding 

The implementation of a network address translation 

protocol (NAT) for IPv6 will hide internal addresses on a 

private network from external view.  The new IPv6 protocol 
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does not have any methods for address hiding and cannot 

inherently hide internal network addresses from external 

view.  IPv4 NAT provides address hiding as a result of its 

address translation.  Every computer on the external side 

of a NAT device only sees and communicates with the NAT 

device.  When outbound communications occur, the NAT device 

strips off the source headers and changes them to correlate 

with the pool of publicly acceptable addresses assigned to 

the device.  When the destination computer receives the 

packet, it returns communications via the NAT assigned 

address and port, not the native private address of the 

computer behind the NAT device.  The only way a computer 

outside the network could initiate communication with a 

computer behind a NAT device would be if the internal 

computer was statically bound to a particular IP/port 

mapping. Meaning that there is a constant 1-to-1 

relationship between the true address of the client and the 

address of the client after being translated.  Even then 

the NAT device still performs an address translation on all 

incoming and outgoing packets. 

2. Dynamic Address Assignment 

NAT for IPv6 will provide dynamic address assignment.  

IPv4 NAT provides dynamic address assignment through its 

address mappings and translations, unless they are 

statically bound.  This provides an advantage because each 

new connection is tracked and mapped to different ports or 

ranges of addresses by the NAT mechanism. This makes it 

difficult for an outsider to determine which computer in 

the NAT-protected network they are communicating with.  

Thus, enumeration and mapping of the network are extremely 

difficult, which in turn makes certain forms of hacking 

more difficult.  IPv6 does not provide any method for 
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obscuring the network topography, nor does it provide any 

method for translating addresses.  NAT for IPv6 will 

provide this functionality. 

3. Transitioning Mechanism 

NAT for IPv6 will help provide a transition from IPv4 

to IPv6.  Currently IPv4 NAT does not support a packet 

transitioning from an IPv4 network to an IPv6 network.  

However, the possibility of using an ALG or reconfiguring 

NAT to do so does exist.  It would be relatively simple to 

configure NAT to encapsulate the IPv4 address into an IPv6 

format in order to traverse an IPv6 network.  All that 

would be required would be to put the IPv4 packet entirely 

into the data field of an appropriately labeled IPv6 

packet.  The NAT device would still maintain an appropriate 

translation table so that when the returning IPv6 packet 

arrives and is stripped down to IPv4 it knows which 

computer to forward it to.  Address hiding in this way 

could still occur as the NAT device could strip the private 

IPv4 network address, assign a global IPv4 address and then 

encapsulate that datagram into an IPv6 packet.  IPv6 does 

not have an inherent method of communicating with an IPv4 

network without using either encapsulation or reformatting 

the header.  This is due to the differences in structure 

between the IPv4 and IPv6 header formats. Again, while NAT 

does not support a packet transitioning from an IPv6 

network to an IPv4 network, it is possible to use an ALG or 

to reconfigure the NAT device. In the case of the latter, 

either the datagram is encapsulated, or the IPv6 header is 

stripped off and replaced with an IPv4 header.   

4. Tunneling 

NAT for IPv6 will be able to tunnel end to end.  IPv4 

NAT is transparent to end-to-end tunneling, as stated in 
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RFC 2663: “All variations of address translations discussed 

in the previous section can be applicable to direct 

connected links as well as tunnels and virtual private 

networks (VPNs). Note also that end-to-end ESP based 

transport mode authentication and confidentiality are 

permissible for packets such as ICMP, whose IP payload 

content is unaffected by the outer IP header translation.” 

[IPNATTC]  IPv6 is also compatible with any application 

layer end-to-end tunneling as it is merely an IP layer 

protocol. 

NAT for IPv6 will also work with link encryption. 

Since NAT for IPv6 is based on NAT for IPv4, it will have 

the same IPv4 NAT characteristics including the ability to 

encrypt the payload on an end-to-end basis. The NAT 

mechanism does not alter any payload data during 

transmission or reception, thus any encryption mechanisms 

at the application level remain untouched by NAT as does 

all application level data. 

5. Connection Limiting 

NAT for IPv6 can be used to limit the number of 

connections to an external network.  IPv6 has no inherent 

method of limiting external connections or performing 

bandwidth shaping.  However, IPv4 NAT can indirectly limit 

the number of external connections a network can make.  By 

limiting either the pool of IP addresses from which a NAT 

device can assign translations, or the range of ports that 

can be assigned for port translation, a NAT device can 

effectively control traffic flow. For example, suppose one 

wishes to limit the number of external connections from a 

network to 50. By limiting the NAT device to a 50-port 

range, all additional requests would result either in the 
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packet being dropped or in an error message. This provides 

a unique way to shape the bandwidth of a network, and can 

possibly act as a security measure by preventing the NAT 

network from becoming a participant in some sort of zombie 

or DoS attack. 

D. DESIRED NAT FEATURES NOT PROVIDED BY IPV6 

Mapping out the respective features of IPv6 and NAT 

individually allows a comparison to be drawn between the 

two.  From this comparison, the desired NAT functionality 

that IPv6 does not provide can be discerned with the 

ultimate goal of understanding the benefits IPv6 NAT has 

over just IPv6.  The primary benefit that NAT provides to a 

networked computer, one neither IPv4 or IPv6 provides, is 

address hiding.  By altering the incoming and outgoing 

addresses of IPv4 or IPv6 packets, the true IP address of 

an internal computer cannot be seen by an outside computer.  

IPv6 has no inherent mechanism for this, while NAT provides 

this implicitly as part of its implementation.  The only 

time an internal computer can be externally identified is 

when there is a static NAT mapping to an external address.  

This ability to hide the topography of a network provides 

an additional layer of security by disrupting a hacker’s 

attempt to enumerate the network.  Another additional 

benefit of NAT is that it prevents broadcasts from 

traversing it, thereby preventing broadcast attacks.  

Additionally, since only internally initiated connections 

will be allowed through dynamic NAT (static NAT is used for 

externally initiated sessions through the NAT device) any 

attempts to flood a network would be stopped at the NAT 

device.  Besides internal network security, NAT can also be 

used to limit the number of simultaneous connections by 

limiting the pool of mappable addresses.  
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 Ultimately, the primary benefit of NAT that IPv6 does 

not provide is the ability to mask the internal network 

from the external viewer. This is well stated by RFC 3022, 

titled the IP Network Address Translator: “On the other 

hand, NAT itself can be seen as providing a kind of privacy 

mechanism.  This comes from the fact that machines on the 

backbone cannot monitor which hosts are sending and 

receiving traffic (assuming of course that the application 

data is encrypted).”[TNAT] Most other security benefits 

from NAT are derived from the primary benefit of address 

hiding.  Even though there were not many other discernable 

benefits of implementing NAT in IPv6, address hiding alone 

is enough to merit the addition of NAT to IPv6.   

E. IPV6 SUPPORT WITHIN THE LINUX KERNEL 

This section will examine the current IPv6 

functionality within the Linux kernel (version 2.6.5) that 

will be used in the remainder of this thesis. It is vital 

that the current functionality that supports IPv6 within 

the kernel is understood so that the existing functionality 

is not used effectively and is not duplicated. 

1. Initialization 

In the Linux kernel version used for this thesis, as 

in all current kernel releases, IPv6 protocol support is 

available as a loadable kernel module, and is not pre-

loaded by default. To enable IPv6, the developer can either 

load the module with the command “modprobe ipv6” or set the 

IPv6 module initialization switch to “yes” in the ifcfg 

file for each interface. If the development is an ongoing 

process, the latter of the two options will be more 

efficient for the developer.  Once the module is loaded, 

the Ethernet interface, unless the IPv4 module is turned 

off, will act in dual-stack mode. This allows the interface 
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to receive both IPv4 and IPv6 packets. Loading the module 

will also assign each interface controlled by the kernel an 

IPv6 address. It will be a link-local address that is based 

on the interface’s MAC address. The system now has 

connectivity to IPv6 devices connected directly to it. 

2. User-Space Functionality 

A large part of the iptables command line interface 

for IPv4 functionality has been directly adapted for IPv6 

usage. Consequently, much of the formatting is exactly the 

same, except for a few v6 notations. Examples of these are 

the ping function and the traceroute function. The switches 

are predominantly the same, however the syntax is ping6 

<IPv6 address>. This formatting is somewhat consistent 

throughout the multiple user interfaces. For example, with 

the Netfilter ip6tables, the syntax is nearly the same as 

the syntax for IPv4 iptables regarding the switches and 

inputs.  

Unfortunately, there are several functionalities 

missing in IPv6 that were present in the IPv4 protocol. 

Namely, the nat table within iptables is not present within 

ip6tables. The primary reason for this is due to the 

developers’ lack of priority for developing connection 

tracking for IPv6 within the Linux kernel. Since there is 

such a large address space in IPv6, it was thought that the 

network address translation functionality would not need to 

be ported from IPv4. [NONAT] Also, since there is no 

connection tracking, some of the filtering rules through 

ip6tables do not work, such as the filtering based on TCP 

sequence number tracking. 
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3. Kernel-Space Functionality 

Much of the kernel-space ip6tables and netfilter IPv6 

functionality is directly adapted from the current IPv4 

functions. There are several functions within the IPv6 

portion of the kernel that even state in the source code 

that they are blatant copies of the IPv4 source code with 

function name changes and different header files. When the 

source code and file structure of the two protocols is 

compared, it is obvious that functionality is basically 

being duplicated and syntactically manipulated to work with 

a different header structure. (See IPv6 Module Sequence 

Mapping & Directory Comparison Appendices) It is debatable 

whether this is beneficial or not to the Linux and 

netfilter communities. It could be argued that since the 

code and functional structure worked in the IPv4 

environment, it is not necessary to change it for IPv6. 

Conversely, if the programming community at large allows a 

blind direct port, it is possible that the port could 

adversely impair the modularity of future enhancements to 

the code.    

The source code and file structure within the kernel-

space iptables and netfilter supporting IPv4 and IPv6 are 

somewhat similar. As stated previously, many of the 

functions are direct copies of IPv4 functions adapted to 

work with the IPv6 protocol. Much of the functionality 

however, was grouped differently with regards to the file 

system. For the most part however, the resulting function 

calls from a given networking action produce relatively 

similar output. 
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IV. MONTEREY SECURITY ARCHITECTURE 

 This chapter contains a summary of the Monterey 

Security Architecture (MYSEA): both its purpose and its 

topology as they relate to this thesis. The idea and design 

of which originated from the problem of achieving 

multilevel security in a high assurance manner. By 

enforcing mandatory security policies, this architecture 

can support such government and military contexts as 

coalition environments, inter-Department dependencies 

created by the Homeland Security Department and the Global 

War on Terrorism. 

 

A. INTRODUCTION 

The basis of the MYSEA project is to provide “a 

trusted distributed operating environment for enforcing 

multilevel security policies.” [MYSEA] The MYSEA 

architecture provides centralized management while 

maintaining compatibility with existing consumer 

applications. MYSEA is a heterogeneous architecture that 

consists of low-assurance, commercial off-the-shelf (COTS) 

clients, specialized authentication devices, and a small 

number of MLS servers (see Figure 10). High assurance 

capabilities are achieved through the policy enforcement by 

a high assurance platform, namely the DigitalNet XTS-400 

which supports the high assurance labeling of subjects, 

objects and networks. [MYSEA] MYSEA allows an organization 

to implement high assurance security without the need to 

completely replace their existing network. The only 

additional hardware needed would be the MLS server and a 
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set of specialized authentication devices, such as the 

Trusted Path Extension (TPE).  

B. ARCHITECTURE 

The MYSEA design is primarily a two-tier, client-

server relationship. The client, through the Trusted Path 

Extension (TPE), authenticates itself at a given session 

level with the MYSEA MLS server. The client is then 

recognized by the server for the remainder of the session 

at the authenticated level and is therefore authorized for 

information of that classification. It may seem that since 

the client must authenticate through the TPE, that the 

architecture is in fact a 3-tier architecture, similar to 

that found in most web-based database clients. Though the 

client must authenticate itself through the TPE, the two 

entities can actually be viewed as one node to the server 

and to the outside network. The TPE, acting as an extension 

of the MLS server, provides a trusted path for the user to 

authenticate with the server.  
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Figure 10.   MYSEA Architecture [MYSEA] 

In the MYSEA framework, a large majority of an 

organization’s network can stay relatively the same. The 

primary differences in the MYSEA architecture as compared 

to the standard enterprise architecture are the TPE, the 

MLS servers, the Trusted Channel Modules (TCMs) and the 

border data link encryptors. As noted by the diagram, the 

TCM and the border encryptors are outside the scope of this 

thesis. The TCM though, provides basically the same 

functionality as the TPE, however the TCM authenticates a 

data link to the server whereas the TPE authenticates a 

client. [MYSEA]  

C. IPV6 NAT TESTBED COMPONENTS 

Only the MLS LAN portion depicted in Figure 10 is 

within the scope of this thesis and is used as the basis 
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for the IPv6 NAT testbed. Abstractly, the network sees the 

TPE and the client as one device. The TPE must perform NAT 

to hide the address of the client. The following diagram 

(Figure 11) shows the IPv6 NAT testbed on which the 

analysis, development, testing and implementation of this 

thesis occurred.  

 
Figure 11.   MYSEA IPv6 NAT Testbed 

As illustrated, the testbed topology consists of two 

subnets, the 2003 subnet and the 2004. The TPE within the 

IPv6 NAT testbed is equipped with two Ethernet cards and is 

consequently able to forward packets between the client and 

the MLS server. A simple addressing scheme was used for 

ease of maintenance within the IPv6 NAT testbed. This 

scheme assigns the middle six octets in the address as well 

as the first three digits in the last octet to zero. The 

following is a description of each component within the 

IPv6 NAT testbed. 
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1. MYSEA Server 

In the MYSEA architecture, the server runs the 

DigitalNet STOP operating system on top of the XTS-400 

platform.  [MYSEA] The reason for this is to make the best 

use of the Bell and LaPadula as well as Biba policies 

supported by the system. For this thesis however, the 

server is an earlier prototype of the MYSEA server that 

runs on a modified version of OpenBSD 3.1. The modified OS 

has the ability to label data at different classifications. 

It does not have the required level of assurance for a 

MYSEA server. There are relatively few of the DigitalNet 

servers that will be used in the MYSEA architecture and are 

fairly expensive, thus development and testing on other, 

less cost prohibitive equipment was acceptable. Also, since 

the protocols that will be used for NAT will be same 

regardless of the server or client systems. [MYSEA COMP] 

2. MYSEA Trusted Path Extension 

The TPE is an extension of the MLS server, providing 

an unforgeable interface for the user to authenticate with 

the MLS server. The principal importance of the TPE is that 

it is non-bypassable by the client. All traffic that is 

transmitted or received by the client must first pass 

through the TPE. This is a mechanism that cannot be 

subverted, regardless of the sophistication of the 

malicious software.  

The TPE can take the form of a separate device from 

the client CPU. Herein, all network traffic leaving the 

Ethernet device must first pass through the TPE before 

reaching the server. The TPE can also take the form of a 

specially designed Ethernet card with a separate processor 
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and memory. The TPE can possibly even be a cutting-edge 

Common Access Card (CAC) with its own processor. The 

primary concern is that the TPE’s domain is separate from 

the client’s with regards to the processor and memory. This 

ensures that the trusted path will not be corrupted by 

malicious activities that might take place on the client  

In the IPv6 NAT testbed environment, the TPE is a PC 

with a heavily modified version of Linux 2.6.5 running on 

an Intel x86 processor. As noted previously, the TPE 

maintains two separate Ethernet cards on two different 

subnets. Currently, the TPE in the IPv6 NAT testbed 

environment does not run the actual TPE code. It only 

emulates the NAT functionality of a TPE and maintains the 

non-bypassability characteristic inherent in any trusted 

path. The packets transmitted or received by the client 

must first be forwarded by the TPE before reaching the 

server.  

It is for this reason that the NAT functionality is 

placed within the TPE. Therefore, as a result of the 

architecture, one could hide either a single client or an 

entire network of clients behind the TPE. From the 

viewpoint of the MLS server, the network topology appears 

as if the server is only in communication with the TPE. In 

reality, there could be one or more nodes hidden behind it. 

Though it is possible to conceal multiple systems behind 

one NAT device, the MYSEA architecture is designed for one 

TPE for every client. The goal of this thesis is to achieve 

this concealment for the MYSEA client in an IPv6 

environment. 

 



53 

 

3. MYSEA Client 

The MYSEA client is intended to be a diskless COTS 

system running unmodified end-user applications. This 

client will have enough RAM to run various applications at 

the same time. Client memory will be reset when a session 

is terminated and all user-specific files and settings will 

be stored on the MLS server.  

In the IPv6 NAT testbed, however, the client is 

currently a Linux 2.4.20-8 kernel running on an Intel x86 

processor. This was done primarily to facilitate the 

testing of NAT in an IPv6 environment. Since Linux has 

built-in support for IPv6 and netfilter, it was chosen for 

developmental reasons. The most important functionality 

requirement for the client system in the testbed 

environment is the capability to test multiple network 

protocols over the NAT environment as well as monitor the 

network traffic from its Ethernet interface. 
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V. COMMON CRITERIA ASSURANCE LEVEL EXPLORATION 

This chapter contains a summary of the Common Criteria 

security evaluation process, a presentation of requirements 

for Evaluation Assurance Level 5 (EAL5) and a discussion of 

how some of these requirements were used to guide the IPv6 

NAT implementation. The IPv6 NAT mechanism implemented for 

this thesis is primarily a one-to-one port of the existing 

IPv4 NAT mechanism, thus the implementation does not 

satisfy many of the EAL5 requirements.  

 

A. COMMON CRITERIA BACKGROUND 

The Common Criteria (CC) was created as a solution to 

the multiple international standards that were intended to 

independently regulate the field of IT security evaluation. 

Before 1999, when the CC was adopted as an ISO standard, 

several standards existed including the Information 

Technology Security Evaluation Criteria (ITSEC) of Europe, 

the Trusted Computer System Evaluation Criteria (TCSEC - 

Orange Book) of the US and the Canadian Trusted Computer 

Product Evaluation Criteria (CTCPEC) from Canada. A 

comparison of the assurance evaluation levels between the 

aforementioned standards can be found in Table 2. 

The intent of the CC was to create a standard set of 

components that define the security requirements needed to 

categorize IT products by assurance and functionality. The 

CC provides a great deal of flexibility in that the design 

team for a particular IT product can specify the security 

functionality within the definition of the protection 

profile for that class of IT products if one exists. The 
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design team also has the flexibility to select the 

assurance level at which the product is evaluated.  

Table 2.   Assurance Evaluation Comparison [CC WWC] 
 

B. EVALUATION PROCESS 

The CC format requires developers to have their IT 

product or code independently evaluated by a third-party 

using a common set of evaluation standards. This process 

involves the examination of the IT product for claimed 

functionality as well as for adherence to a stated set of 

security requirements. This evaluation is performed by an 

independent testing lab and can be costly in terms of both 

time and money. The major benefit received from this 

evaluation is the ability to give confidence in the product 

to the end-user based on a guaranteed security assurance 

level. 

For a CC evaluation there are two principal components 

that the developer must provide to the independent 

evaluator: the Target of Evaluation (TOE) and the Security 

Target (ST). The Protection Profile (PP) is optional, 

however it can provide a more abstract statement of 
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security objectives to which many security targets may be 

conformant. 

The Protection Profile (PP) defines the set of 

security objectives and requirements (both functional and 

assurance) for an IT product class. Product categories 

include but are not limited to: firewalls, intrusion 

detection systems (IDS), key recovery, operating systems 

(OS), peripheral switches and tokens. These are the 

categories for which, at the time of this publication, a 

valid US Government PP exists. If the IT product claims 

conformance to a PP, then the validation and fulfillment of 

the appropriate profile is required for certification of 

the IT product. [CC SECEVAL] 

The Security Target (ST) contains the security 

objectives and requirements for a particular IT product. 

The level to which the independent lab examines the TOE’s 

assurance measures and functionality is dependent on the 

desired Evaluation Assurance Level (EAL). As illustrated in 

Table 2, the EALs correlate to the evaluation levels of 

TCSEC and ITSEC, with EAL7 being the highest evaluation 

level and EAL0 the lowest.  



58 

 
Table 3.   EAL5 Fulfilled Requirements By This Project [CC] 

 

The Target of Evaluation (TOE) is the actual IT 

product that is to be evaluated by the third-party lab. The 

PP defines the scope of the product for the specific 

category of evaluation that the TOE must satisfy in order 

to claim conformance. [CC SECEVAL] 

C. EAL5 REQUIREMENTS 

For an IT product to receive an EAL5 certification, it 

must satisfy a series of conditions that verify its 

evaluated level of assurance. The security assurance 

evaluation of an IT product includes verifying its 

configuration management (CM), delivery and operation, 

development, guidance documents, life cycle support, 

testing, and vulnerability assessment. A summary of these 



59 

requirements can be found in Appendix F. Table 3 

illustrates the fulfilled assurance components by this 

implementation for an evaluation level of EAL5. [CC 

SECEVAL] The following sections describe the security 

assurance requirements that were partially satisfied by 

this NAT for IPv6 implementation.  

1. Installation, Generation and Start-Up 

The installation guide to install and setup the 

modified kernel with NAT functionality for IPv6 is 

described in Appendix G. This guide patially satisfies the 

ADO_IGS.1 requirements described in Appendix F, Section 5. 

2. Administrator Guidance 

Appendix E describes how to administer and use the NAT 

mechanism for IPv6 developed for this thesis. This guidance 

manual is intended for use as the man page for the 

ip6tables service provided by the  Linux kernel. This 

manual partially satisfies the AGD_ADM.1 requirements 

described in Appendix F, Section 13. 

3. Development Security 

This development meets these requirements on many 

levels. First, the development occurred at the Naval 

Postgraduate School, which is currently subject to the 

Department of the Navy Force Protection measures. Second, a 

cipher-locked door that remains shut at all times protects 

the lab in which development occurred. Finally, the 

computers used for development are protected by 

identification and authentication mechanisms that validate 

the identity of the user to prevent unauthorized access on 

the development system. Since there was no prior written 

plan or procedures regarding security, these measure only 

partially satisfy the ALC_DVS.1 requirements described in 

Appendix F, Section 15. 
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4. Functional Tests 

Appendix D provides the results from testing the 

functionality of the IPv6 NAT implementation. This 

requirement is only partially fulfilled since there are no 

test plans, procedures or documentation. These test results 

partially satisfy the ATE_FUN.1 requirements described in 

Appendix F, Section 20. 
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VI. DEVELOPMENT AND TESTING OF NAT FOR IPV6 

This chapter discusses the development and 

implementation of NAT for IPv6, which primarily is a one-

to-one port of the IPv4 netfilter NAT mechanism.  The order 

in which the layer 3 and layer 4 checksums were calculated 

had to be reversed because the standard IPv6 header 

structure does not containing a checksum.  Additionally, 

the introduction of a pseudo-header checksum to ICMPv6 

required the functionality to be restructured.  These 

modifications, as well as, porting methodology, testing 

procedures, and debugging outputs will also be discussed. 

In addition, the specification document for this project 

can be found in Appendix B. 

 

A. CONNECTION TRACKING 

For NAT to function properly, it must be able to track 

connection information for each initiated session.  This 

allows NAT to translate a packet to the proper internal IP 

address.  Otherwise, NAT would not be able to determine if 

an incoming packet is attempting to initiate a new session, 

or if it is a reply to a previously established connection.  

For IPv4, the netfilter connection tracking module 

performed this function by capturing and storing session 

information accessable to any number of processes to 

access, NAT being one of them.  However, from the time IPv6 

was integrated into the kernel up to the latest standard 

2.6.5 Kernel distribution, connection tracking for IPv6 was 

not developed.   

The Universal Playground for IPv6 (USAGI) project 

develops and distributes IPv6 programs and kernel patches 
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for interested developers.  Included in some of the more 

recent Linux 2.6 kernels is a connection tracking module 

for IPv6 that closely mirrors the IPv4 connection tracking 

implementation.  For this thesis the IPv6 NAT mechanism was 

ported to run on the USAGI-altered 2.6.5 Linux kernel.  

Using the USAGI kernel allowed the development to focus on 

NAT rather than supporting functionality.  This helped to 

shorten the development time. 

B. PORTING METHODOLOGY 

Since the netfilter, connection tracking, and user-

space iptables framework for IPv6 had already been ported 

to IPv6, it was decided that a one-to-one port of the IPv6 

NAT code would be the easiest way to create a functional 

implementation.  The IPv6 programming convention used by 

the netfilter developers was maintained in the ported code.  

This port was easier because it was done on the same 

hardware architecture, Intel X86, instead of crossing over 

to some other hardware architecture, SPARC for example.  

Additionally, porting this code using the same operating 

system made the process easier.  Porting between Linux and 

Windows would have been far more difficult than to and from 

Linux.   

Performing this port using the same hardware and 

operating system prevented some potential difficulties.  

For example, recompiling the Linux kernel requires complex 

configuration for hardware dependancies, but using the same 

hardware allowed the same configuration to be used each 

time.  A majority of the one-to-one port involved copying 

the existing IPv4 NAT code into the IPv6 codebase, and then 

changing variable names, function names, and references to 

reflect IPv6 values.  Problems other than simple porting 
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errors are discussed later.  Using the same porting 

methodology as the netfilter developers allowed the coding 

process to transition much more smoothly than if an entire 

restructuring of the code had been attempted.   

1. User-Space Iptables 

Iptables package 1.2.9 contained the latest user-space 

iptables and ip6tables implementation available at the time 

of the IPv6 NAT development.  Since NAT was not ported to 

the IPv6 ip6tables, this version did not have the logic 

necessary to interact with the kernel-space IPv6 NAT code.   

In order to have basic NAT functionality, it was 

necessary to perform a one-to-one port of the source NAT 

(SNAT) target.  SNAT provides the logic needed to allow the 

user-space ip6tables to interact with the nat table shared 

by the kernel-space.  Instead of creating an SNAT target, 

the IPv4 SNAT target was ported to ip6tables.  The one-to-

one port was chosen because it followed the methodology of 

the netfilter programmers.  Additionally configuration of 

the main ip6tables file was necessary so that it recognized 

the new SNAT target.  This process succeeded with little 

difficulty as the one-to-one port was relatively 

straightforward.   

One coding issue relative to the parsing of a port 

number from a given IP address range was encountered.  The 

standard convention for designating a layer 4 port with an 

IPv4 address is to use a colon to separate the IP address 

and port pairing.  For example, 192.168.100.100:80 would 

specify that the 192.168.100.100 IP address was to operate 

on port 80.  This IPv4 convention does not work with IPv6, 

as colons are used to separate the IPv6 octets.  However, 

RFC 2732 [IP6 URL] establishes the convention of placing 
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brackets around the IP address to delineate it from the 

port pairing.  For example, specifying that IPv6 address 

2003::5 operates on port 80 results in the expression: 

[2003::5]:80.  However, because this IPv6 NAT development 

only deals with Basic NAT, which does not deal with ports, 

this problem was not addressed.  

2. Connection Tracking and Netfilter 

Although the USAGI developers had ported the 

connection tracking modules for IPv6, they deliberately 

left out NAT-specific code.  The connection tracking core 

source code file ip6_conntrack_core.c was modified to 

include NAT functionality that had not been ported from its 

IPv4 counterpart.  This code is referenced in Appendix C.   

Additionally, the connection tracking header file was 

changed to allow programmers to utilize NAT helpers and 

helper private information in connection tracking.  Nat 

helpers are functions that help NAT process packets from 

applications that require more than simple layer 3 and 

layer 4 alteration.  For example, FTP, TFTP, and AH need 

NAT helper functions to deal with IP information within the 

payload.   

Unexpectedly, modifications to netfilter core code had 

to be made as well.  The netfilter.c in Ipv4 file contains 

a function called skb_ip_make_writable that allows NAT to 

write the translated IP information to the networking 

packet buffer (skb).  This function did not exist for IPv6 

and had to be ported in order for NAT to change the packet 

in the network buffer.    

3. NAT Code 

The one-to-one port of the NAT code is described here.  

The porting process began by comparing the IPv4 netfilter 
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files to those in IPv6 to determine where they differed.  

Each file was examined to determine if it had any relevance 

to NAT either as a core code file or as a supporting file.  

Only supporting files that are germane to this thesis 

(i.e., to support SNAT) were ported.  Protocol-specific NAT 

helper files and functions such as the FTP and TFTP modules 

were not ported.  These modules allow NAT to deal with 

applications needing special translation.  Porting of these 

modules is outside the scope of this thesis.   

The Change Control Procedures Appendix (see Appendix 

A) contains a list of all NAT files that were either 

modified or ported, and a brief description of their 

functionality.   

Porting the NAT code involved updating the IPv4 code 

to handle the differences in format between the IPv4 and 

IPv6 headers.  For example, since the IPv4 header can 

include any number of options, its size is dynamic and the 

NAT code has to calculate the actual header length whenever 

it needs to know the IP header length.  However, IPv6 

headers are static in length and the NAT code can use a 

constant index value to determine the header length of an 

IPv6 packet.   

Another difference between the IPv4 and IPv6 code that 

had to be fixed was how different pointers reference 

specific structures and fields.  For example, the IP header 

pointer of the network packet buffer structure (skb) in 

IPv4 is named iphdr, yet in IPv6 the IP header pointer is 

named ipv6hdr.  Many of the variable names had to be 

altered to reflect name changes made between IPv4 and IPv6 

because of the convention that already existed when 

netfilter was ported to IPv6.  In addition to changing 
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variable names, it was also necessary to edit many of the 

included header files and many of the included, as well as 

referenced, function names.  For instance, the NAT code 

needed the ipv6.h file as opposed to the ip.h file, and it 

had to rename its reference to ip_conntrack_tuple to 

ip6_conntrack_tuple.  All of these changes were based on 

the porting conventions used by the netfilter programmers 

when they ported the networking suite from IPv4 to IPv6.   

C. PORTING DIFFICULTIES 

The one-to-one method of porting NAT code provided a 

streamlined framework for modifying and creating code. 

However, several difficulties arose during development.  

These are described in this section.  

1. IPv6 Address Structure 

The first major obstacle experienced in the NAT code 

port dealt with differences in how the kernel handled the 

IP addresses.  In the Linux kernel an IPv4 address is 

defined as an unsigned 32-bit integer, yet an IPv6 address 

is defined as a 128-bit structure.  This structure contains 

a union of three arrays of 4, 8, and 16 elements, allowing 

the 128-bit IPv6 address to be accessed in three different 

formats.  Many of the functions in IPv4, both NAT and other 

netfilter functions, manipulate the IP address through 

binary operators.  However, binary operators cannot be 

applied to a structure, making it difficult to compare IP 

addresses for equality, increment or decrement IP 

addresses, or to perform bitwise manipulations.  A simple 

assignment of a translated IP address to a source IP 

address (src.ip = nat.ip) cannot be performed with a 

structure data type.  Some functions use bitwise 

manipulation as a shortcut to performing standard 

mathematical operations.  For example, computing a checksum 
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based only on what has changed would be a shortcut to re-

computing the entire checksum after one or more fields have 

changed. 

In most cases the solution to this problem involved 

accessing the IP address one array entry at a time or by 

assigning pointers to the array.  For instance, if the 

above IP address assignment were to be performed through 

array access, the result would look something like the 

following:  src.ip.s6_addr32[0] = nat.ip.s6_addr32[0]. The 

index is then incremented on each array element until it 

reaches 3, thereby assigning each 32-bit portion of the 

temporary IP address to the respective 32-bit portion of 

the source IP address.  If the operation were to be done 

with pointers, the contents of the location pointed to by 

the source IP pointer would be assigned to contain the 

contents of the location pointed to by the temporary IP 

pointer.  In some cases the solution simply involved using 

existing functions already ported by netfilter and USAGI 

programmers. 

2. Checksum Calculation Ordering 

When the NAT mechanism alters the header of a packet, 

it must recalculate the packet’s checksum so that the 

packet will not be dropped at its next hop due to an 

invalid checksum.  In IPv4, a recalculation of the layer 4 

checksum is needed when layer 4 information is manipulated.  

The new checksum is based off of the translated layer 4 

information.  Following the checksum recalculation for 

layer 4, the NAT code manipulates the IP addresses and re-

computes the IP header checksum.  This logic flow works for 

ICMP for IPv4, however it does not work for ICMP for IPv6 

(ICMPv6).  The checksum for ICMPv6 is different from that 
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for ICMP because it includes in its calculations not only 

the checksum of the layer 4 header information and the 

layer 4 data, but also the checksum of a pseudo-header.  

This pseudo-header is needed because there is no checksum 

in the IPv6 header to protect the header information.  The 

pseudo-header consists of the source and destination IP 

address, the length of the layer 4 header and packet, the 

checksum field, and the next header field.  Figure 12 shows 

the pseudo header format for IPv6 as taken from RFC 2460. 

[IP6 SPEC] 

 
Figure 12.   Layer 4 Pseudo-header for IPv6 [IP SPEC] 

 

Calculation of the ICMPv6 checksum before IP address 

translation results in an incorrect checksum due to the IP 

addresses in the pseudo-header.  The solution to this 

problem was to switch the order of the IP address 

translation and the layer 4 checksum calculation.  Figure 

13 shows a portion of the IPv4 manip_pkt() function, 

located in ip_nat_core.c, that recalculates the checksum of 

the IP header.   
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Figure 13.   IPv4 Function manip_pkt() 

 

In IPv4, the ICMP protocol information is manipulated 

(line 1) before the IP address is changed (lines 6 or 9 

depending on the type of NAT) because the ICMP checksum did 

not depend on the IP addresses.  For IPv6, the calculation 

of the pseudo-header in the ICMPv6 checksum requires a 

switch in logic so that the modified IP addresses can be 

included in the ICMP pseudo header checksum calculation.    

This change can be seen in Figure 14, which is the IPv6 

version of the manip_pkt() function, located in 

ip6_nat_core.c 
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Figure 14.   IPv6 Function manip_pkt() 

 

The “Manipulate IP part” (line 2 or 4 depending on 

type of NAT) and the “Manipulate protocol part” (line 5) 

are switched compared to the existing IPv4 NAT code.  This 

change in ordering provided the pseudo-header calculations 

with the translated IP addresses necessary to calculate a 

valid checksum.  Another noticeable difference between 

Figure 13 and Figure 14 is the absence of an IP header 

checksum calculation, which is present on lines 5 and 8 in 

Figure 13, but not needed by IPv6 (Figure 14). 

3. Checksum Calculation Algorithm 

In addition to changing the order of operations in the 

manip_pkt function, it was also necessary to alter the 

method in which checksums were calculated for the layer 4 

headers.  In IPv4, checksums of translated packets are 

calculated using an optimized algorithm implemented in 

ip_nat_cheat_check that uses bitwise manipulation to re-

calculate the checksum based only on the changed ports and 

IP addresses.  This function performs basic bit 

manipulations in assembly code and assumes that the input 

arguments are 32-bit integers.  This assembly code function 
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was not easily ported to support IPv6 data structures.  A 

less optimized, but straightforward, method that uses the 

existing csum_partial() and csum_ipv6_magic() functions 

solved the problem.  The csum_partial() function calculates 

the layer 4 checksum with the exception of bitwise 

manipulation.  Omitting the final bitwise flip then allows 

the result to be folded into the pseudo-header checksum 

calculations done by csum_ipv6_magic().  This results in a 

valid layer 4 checksum which accounts for the pseudo-

header, layer 4 header, and layer 4 payload.    

D. DEBUGGING 

After the initial one-to-one port was completed and 

successfully compiled into the kernel, the code did not 

function as expected.  Debugging was necessary to determine 

why the code was not operating properly and extensive use 

of printk was the primary method for debugging the code.  

Printk is the kernel debugging mechanism that flushes 

debugging messages to a log file that a user can access.  

The initial solution to the improper code execution was to 

increase the number of debugging messages so that detailed 

call chains could be mapped out.  These additional 

debugging statements allowed the code to be traced to 

within a function call of the problem. 

One drawback of printk is that it requires that the 

kernel messages be flushed to the log file. This limitation 

resulted in a problem during testing, when an errant 

pointer caused the kernel to trap and lock up the system.  

To obtain real-time kernel debugging messages, and to allow 

the point of failure to be isolated, it was necessary to 

enable the serial console interface of the kernel.  This 

interface allowed the display of real-time debugging 
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messages on a remote console.  This helped to isolate the 

trapping code. 

While effective in displaying function call chains and 

variable values, the use of printk to display the actual 

packet data was cumbersome.  To obtain this information it 

was necessary to use the tcpdump program to obtain a 

hexadecimal output of packets entering and leaving the TPE 

interfaces.  This output allowed detailed scrutiny of 

packet contents to ensure that information into and out of 

the TPE was correct.  Tcpdump places the network interface 

card (NIC) into the promiscuous mode to capture all packets 

entering or leaving the interface, and outputs the captured 

information.  This simplicity and its inclusion as a 

standard tool in almost all Linux distributions made 

tcpdump a good choice for packet capturing on the TPE.   

During the later stages of debugging and development 

the TPE would properly translate IP addresses, but the 

packet would be dropped at the server.  This problem was 

approached by placing the Ethereal program on both the 

client and server machines.  Ethereal produced a much more 

detailed and user-friendly output.  This output helped 

solve the question as to why packets would reach the server 

properly translated, yet still be dropped.  Ethereal output 

showed that the packet was properly translated but that its 

checksum was incorrect.  Ethereal also calculated what the 

checksum should have been given the header information.  

The reason packets were being dropped at the server was an 

improper checksum calculated by the NAT code, because the 

wrong length was passed to the checksum functions.  Once 

this problem was fixed, packets were successfully 

transmitted and the NAT code functioned properly. 
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E. TESTING 

For this thesis, different network applications were 

used to verify that the SNAT implementation works 

correctly.  Three types of protocols were tested: ICMPv6, 

UDP, and TCP.  ICMPv6 was tested using the ping6 mechanism, 

UDP was tested using the traceroute6, and TCP was tested 

using rlogin and by downloading a webpage through the TPE.  

During each testing phase various errors were encountered 

and ultimately fixed. 

Ping6 tested ICMPv6 NAT by sending an Echo Request 

packet from the Client to the Server.  This Echo Request 

packet then resulted in transmission of an Echo Reply 

packet back to the client.  During this testing Ethereal 

showed that the ICMPv6 Echo Request packet was properly 

translated through the TPE, but was dropped by the server.  

This problem was a result of the improper calculation of 

the checksum and the calculation of the checksum before the 

IP address was translated.  Once this logic and ordering 

was fixed, ping6 completed successfully.  Ethereal showed 

proper translation of both the ICMPv6 Echo Request and Echo 

Reply packets to and from the client and server machines.  

These Ethereal and tcpdump outputs can be found in Appendix 

D.   

The next test was to run traceroute6 to test UDP 

packet translation.  Traceroute6 determines the hop-by-hop 

route from source to destination.  A UDP packet is sent out 

with a hop limit of one and each time traceroute6 receives 

an ICMPv6 Timeout message, it records the IP address and 

adds it the route.  When the UDP packet reaches the 

specified target destination, an ICMPv6 Destination 

Unreachable message is returned and the route is displayed.  
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During NAT testing, Ethereal output from the server showed 

that while UDP packets were properly translated, the 

replying ICMPv6 Destination Unreachable packet was dropped 

at the TPE.  After finding a misplaced bracket in the 

ported code, the ICMPv6 Destination Unreachable packet was 

properly forwarded from the server, through the TPE, to the 

client.   

At this point, the Ethereal output from the client 

showed that the ICMPv6 Destination Unreachable packet was 

being dropped due to an improper checksum.  Further 

evaluation of the call chain, and respective code, revealed 

that ICMPv6 error messages followed a different logic flow.  

This logic flow reached a checksum calculation, in the 

function icmpv6_reply_translation() located in 

ip6_nat_core.c, that had not been changed to use 

csum_partial() and csum_ipv6_magic().  After the checksum 

calculation logic was fixed, the client properly received 

the ICMPv6 Destination Unreachable packet from the Server, 

and traceroute6 operated successfully.   

The NAT mechanism for TCP uses the same logical flow 

as UDP packets except that the TCP flow also accounts for 

ports which is beyond the scope of this thesis.  After 

changing the TCP checksum calculation to use csum_partial() 

and csum_ipv6_magic(), TCP packets properly traversed the 

NAT mechanism in the TPE.  To test the translation of TCP 

packets from the client to the server and back again, 

rlogin was used in addition to downloading a webpage.  

Using rlogin, an authorized user was able to log into the 

server from the client, list a directory, use “cat” to list 

the contents of a text file, and then log off, all through 

the TPE running NAT.  Downloading the webpage involved 
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setting up an Apache web server on the Server machine and 

then downloading the webpage through the TPE running NAT.  

The results of both tests were verified by Ethereal outputs 

(see Appendix D) that showed the proper translations at 

both the server and client ends of the IPv6 NAT test bed.  
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VII. CONCLUSION & FUTURE WORK 

This chapter gives an analysis of the NAT mechanism 

integrated within the Linux kernel for use with IPv6. 

Recommendations for future work on the IPv6 NAT mechanism 

and suggestions for pursuit of future work on the current 

NAT implementation for IPv6 within the Linux kernel are 

also presented. 

 

A. ANALYSIS OF THE INTEGRATED NAT 

Upon completion of debugging, the NAT mechanism was 

tested within the framework of the IPv6 NAT tested for use 

with the MYSEA architecture. As explained in Chapter IV, 

the NAT mechanism was placed on the TPE and all traffic 

from the client or server must pass through the TPE. 

Testing of three protocols, TCP, UDP and ICMP, was 

conducted and the results are described in Chapter 4 and 

can be found in Appendix D. The SNAT functionality was 

demonstrated to function properly with use of common 

networking applications such as ping6, traceroute6 and 

rlogin. As a culminating experiment, an Apache web server 

was placed on the testbed server and hosted multiple web 

pages. The IPv6 NAT mechanism was then activated on the TPE 

with rules set to mask the identity of the client. The 

client then accessed the web pages from the server, through 

the TPE, with a connection that was successfully masked 

through the NAT mechanism. Ethereal was used to verify the 

successful translation of packets.  

B. FUTURE ALTERNATE IMPLEMENTATION DESIGN 

The NAT mechanism developed in this thesis is based on 

the current dual-stack architecture in current Linux kernel 
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releases. In this architecture, there are separate call 

chains for IPv4 and IPv6. For future NAT developments, 

there are two possibilities for implementation redesign: 

rewrite the current dual-stack netfilter architecture into 

a single stack, or decouple the NAT functionality from 

netfilter. 

Currently, there are two separate netfilter stacks for 

IPv4 and IPv6. This functionality traces to the 

initialization of netfilter where it is called by different 

receive functions for IPv4 packets and IPv6 packets. A 

future design could combine the functionality present in 

both stacks into one, cohesive stack. This would reduce the 

amount of functionality duplication. This is beneficial for 

assurance purposes since there would be less code to 

verify. Also, the code would be more efficient and require 

less memory than the current implementation. This project 

would however involve an immense amount of work and a great 

deal of previous knowledge regarding both netfilter and 

Linux kernel programming. 

Alternately, the NAT mechanism could be removed from 

netfilter such that it is a separate entity. Presently, the 

NAT mechanism is highly dependant on the netfilter 

architecture. 

Another redesign alternative would be to develop a 

kernelized NAT mechanism that operates in a completely 

isolated manner. Here, the mechanism would most likely 

intercept the packet before netfilter manipulates it via 

the receive functions. This design would be beneficial 

since all the NAT functionality would be modular and thus 

better suited for a high assurance design. 
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C. OTHER FUTURE WORK 

There are many areas in which the current 

implementation could be improved without restructuring the 

architecture or design. These include but are not limited 

to work on: extension headers, multiple protocol support, 

greater user-space functionality, port translation, 

multiple types of NAT mechanisms, and address or port 

ranges. 

One recommendation is to fix the checksum calculations 

to handle extension headers when calculating the length of 

layer 4. In the current implementation, this is calculated 

by subtracting the IPv6 header length from the length field 

in the skb. This has the potential to yield an improper 

value, specifically if extension headers are present. In 

the current protocol, the next header field of the IPv6 

header does not necessarily point directly to layer 4, 

primarily in the case of extension headers resulting from 

IPSEC or ESP. [IP SPEC] A suggested method for properly 

calculating the layer 4 payload length would be parse 

individual fields from the skb until the beginning of the 

layer 4 header is reached and then calculate the length. 

Another recommendation for future development would be 

to enable support for other layer 4 protocols. Currently, 

the implementation supports TCP, ICMP and UDP. Though these 

protocols enable a great deal of functionality, there are 

other protocols, such as FTP, TFTP and IRC, that are 

functional in IPv4 that are not yet developed for IPv6. For 

example, IRC will be required to support the new Naval 

Research Laboratory multilevel chat program in the MYSEA 

multilevel testbed. 
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At this time, only the SNAT target has been ported to 

the IPv6 user-space ip6tables. For the purposes of this 

thesis within the IPv6 NAT testbed for the MYSEA 

architecture, it was the only target needed for testing 

purposes. There are other targets, such as DNAT and 

MASQUERADE, which are present in IPv4 that have yet to 

ported to IPv6. Porting these targets would allow greater 

flexibility for the nat table within ip6tables. 

Future work could involve advancing the current NAT 

implementation to perform the additional NAT functions as 

dictated by RFC 2663. [IPNATTC] This NAT implementation 

only handles the functionality necessary for basic NAT. 

[IPNATTC] This work could involve adding port translation, 

destination NAT and static NAT support to the current NAT 

implementation.  

Finally, this NAT implementation does not support the 

assignment of ranges of either ports or addresses for the 

address translation mechanism to use. Future work in this 

area could include not only developing the user space and 

kernel space to accept ranges, but also the development of 

a robust algorithm for use in assigning either addresses or 

ports. 

D. SUMMARY 

A working implementation of NAT for IPv6 within the 

Linux kernel has been produced. It was created on a 

modified version of the Linux 2.6.5 Kernel that supports 

connection tracking. The NAT development created here has 

been tested for support of the protocols of TCP, UDP and 

ICMP for IPv6. 
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APPENDIX A. CHANGE CONTROL PROCEDURES 

VERSION CONTROL AND BACKUP PLAN 

A standard naming scheme was developed that allowed 

versions to be tracked as well as the restoration of 

previous versions, should that become necessary.  The 

naming scheme is as follows:  NAME-MM-DD-YYYY-V, where NAME 

is the name of the document, MM is the month, DD is the 

day, YYYY is the year, and V is the version for that 

particular day using the alphabet (ie, ver A, ver B, etc.).  

This allowed versions to be found easily and changes to be 

tracked throughout the development process.  

The backup plan was fairly simple as well.  Upon 

creation of a new version of any document, the first step 

was to save the document locally on either the network 

drive or the home computer.  The next immediate step was to 

email the document to the thesis partner and the originator 

of the document, effectively storing a copy on the mail 

server.  Additionally, an archive of all thesis related 

documents was compiled on writeable CD/DVD media, and on 

home computers as needed.  This provided sufficient 

redundancy, and given the version control scheme, it 

permitted fairly easy recovery from any loss of data.  In 

the event of data loss, the procedure would have been to 

copy the archive over to the affected machine. 

In addition to the backup plan, multiple systems were 

maintained on which the most up to date files and pieces of 

code could be found.  The client machine in the lab was 

configured to dual boot into either Windows XP or Red Hat 

Linux.  Both of these partitions served as repositories for 

thesis documents. The source code for the project was 
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stored on both the TPE and on writeable CD. In addition, 

versions of the thesis were stored on personal 

workstations, USB removable storage and writeable CD. 

 

CONFIGURATION ITEMS AND DESCRIPTION 

This project included all the listed files ported or 

altered in order to obtain working NAT functionality.  A 

distinction was made between ported and altered files.  

Altered files were existing files that required 

modification in order to support NAT.  Ported files were 

files that did not exist in the working 2.6.5 kernel with 

IPv6 connection tracking, and were necessary to obtain NAT 

functionality.  This code was comprised mostly of NAT files 

ported to IPv6.  The following is a list of all the altered 

or created files within the netfilter suite: 

• /include/linux/netfilter_ipv6/ip6_conntrack.h 

• /net/ipv6/netfilter/ip6_conntrack_core.c 

• /include/linux/netfilter_ipv6/ip6_nat.h 

• /net/ipv6/netfilter/ip6_nat_core.c 

• /include/linux/netfilter_ipv6/ip6_nat_core.h 

• /net/ipv6/netfilter/ip6_nat_helper.c 

• /include/linux/netfilter_ipv6/ip6_nat_helper.h 

• /net/ipv6/netfilter/ip6_nat_proto_icmp.c 

• /net/ipv6/netfilter/ip6_nat_proto_tcp.c 

• /net/ipv6/netfilter/ip6_nat_proto_udp.c 

• /net/ipv6/netfilter/ip6_nat_proto_unknown.c 

• /include/linux/netfilter_ipv6/ip6_nat_protocol.h 

• /net/ipv6/netfilter/ip6_nat_rule.c 

• /include/linux/netfilter_ipv6/ip6_nat_rule.h 

• /net/ipv6/netfilter/ip6_nat_standalone.c 
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• /include/linux/netfilter_ipv6/ip6t_iprange.h 

• /net/ipv6/netfilter/ip6t_NETMAP.c 

• /net/ipv6/netfilter/ip6t_SAME.c 

• /include/linux/netfilter_ipv6/ip6t_SAME.h 

• /net/core/netfilter.c 

• /home/iptables-1.2.9rc1/extensions/libip6t_SNAT.c 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 



89 

APPENDIX B. SPECIFICATION DOCUMENT 

INTRODUCTION 

The Network Address Translation (NAT) for IPv6 will be 

developed using a modified Linux 2.6.5 kernel that supports 

connection tracking.  Intended users for this application 

are any user desiring IPv4 NAT functionality for IPv6.  

Specifically, these are users desiring to translate 

addresses from a private network to authorized public 

network addresses.   

The main purpose of this application is to provide NAT 

functionality for IPv6. NAT only deals with altering the IP 

header fields and checksums in the IPv6 datagram packets.  

Additionally, an interface for interaction with the NAT to 

allow static binding of IP addresses and assignment of 

dynamic IP address ranges is desired.  User and system 

interactions include calls to and from the kernel module, 

calls to the ip6tables, calls to the netfilter module, 

which handles packet processing in general, calls to 

connection tracking, and reference to information in the 

NAT table.   

Users will interact with the protocol from a command 

line interface by altering the nat table entries to reflect 

desired translations.  Additional software requirements 

include the use of Application Level Gateways (ALGs) to 

help any software that alters IP information interact with 

the NAT device.  These gateways would be designed and 

implemented by the producers of the given software. 
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OPERATING ENVIRONMENT 

The expected operating environment of this NAT 

implementation will be on a networked computer running a 

modified version of Red Hat 9.0 design to support 

connection tracking interacting with an IPv6 network.  

Initially the environment will be a closed, with the NAT 

mechanism performing a one-to-one translation; however, 

ultimately the implementation will be usable by any person 

running the modified Linux 2.6.5 kernel wishing to run NAT 

on IPv6.  Off-the-shelf tools will be the modified 2.6.5 

Linux kernel designed to support connection tracking and a 

personal computer capable of being networked and of running 

the operating system and capable of networking with an IPv6 

network.   

The computer running the NAT protocol should be of 

sufficient speed to perform the address translation without 

any noticeable delay or hindrance to network 

communications.  The physical environment of the protocol 

will be constrained by the physical hardware needed to 

implement the NAT protocol.  Namely, the requirements the 

physical computer and networking devices have will also be 

those of the application.  Should this application be 

deployed in an untrusted environment, special care must be 

take to safeguard the NAT device so that it is not turned 

off or manipulated, allowing external networks to 

communicate directly with the internal networks using their 

true IP address.   

Users are expected to understand the basics of both 

the Linux operating system and IP networking. The user must 

know what NAT does and how it performs its job.  Expected 
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usage pattern of the NAT protocol will be that of the 

network.   

INTERFACES 

Operation of NAT should be fairly transparent to the 

user, therefore only a simple interface to allow static 

binding of IP addresses will be provided. It will allow the 

NAT protocol to be turned on or off, and will allow the 

user to program desired translations into the nat table.  

The existing ip6tables will be used as the interface.  

Access to the NAT interface will be limited to users 

with root privilege.   

The interface will be command line, since it was 

previously implemented in command line in IPv4 and this 

would appear to be the simplest and most efficient method 

of interaction.   

The interface will consist of commands that allow the 

user to perform the tasks of configuring translations, 

static bindings, and turning NAT off and on.  The interface 

will only manipulate the nat table and allow the user to 

start and stop the NAT.  Since there will be only one 

interface, there will not be any inter-interface 

dependencies.  NAT information will be transferred to and 

from the interface as soon as it is updated so that the 

interface gives the user accurate information of what the 

nat table contains.  The NAT interface will still be 

functional when there is no networking connection because 

the user can still set up a nat table and NAT rules 

regardless of whether or not there is connectivity. 

SYSTEM OPERATION 

The runtime protocol will operate in a passive mode.  

Its presence should be transparent to the user. NAT 
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operation will begin after the user invokes the protocol 

through the interface, which will activate the NAT 

functionality within the netfilter hooks.  An overview of 

the protocol’s operation is characterized diagrammatically 

by the following flow chart. (See Figure 15) Note that in 

the diagram the firewall system merely refers to the 

computer that receives the packet. 
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Figure 15.   Netfilter Packet Flow [NF OVER] 

The user interface alters the nat table rules that are 

traversed when it is called by one of the netfilter hooks.  
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The application of this development is restricted to a 

networking environment.  There is no necessity for NAT in a 

stand-alone environment.  Major components of the 

application include: the interface, the nat table, any 

modified kernel source code, netfilter and its hooks, and 

the user interface to netfilter and ip6tables.  The nat 

table will be stored in a non-volatile location to 

eliminate the necessity of re-entering the translation 

mappings every time the machine is rebooted. 

DATA TYPES & STORAGE 

 The NAT protocol for IPv6 will use the source and 

destination addresses, the IP header checksum, and the nat 

table, which stores the mappings.  All other information 

within the IPv6 header, while related to the task of NAT, 

is not specific to what the NAT protocol will do.  The 

source and destination address both tell the IP packet 

where to go, and in the case of this implementation, they 

will be replaced by desired mappings to hide the true IP 

address from the sender or receiver, depending on the type 

of NAT employed, preventing them from gaining privileged 

knowledge of the network topography.   

The source and destination addresses will be stored by 

the connection tracking module and read by the netfilter 

hooks to determine if any rules exist in the nat tables for 

the specific IP conversation.  The IP address will then be 

translated by ip6tables.  The layer 4 header checksum is a 

quality of service mechanism that helps assure that the 

original packet has remained unchanged.  This checksum will 

be invalid if either the source or destination IP addresses 

are modified, unless the checksum is recalculated to 

reflect the changed IP addresses. The NAT mechanism will 
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recalculate this checksum in a manner dependant on the 

protocol of the packet traversing the NAT mechanism.  The 

mappings contained in the nat table will be compared by 

ip6tables to the session information saved in connection 

tracking to see if rules need to be applied. 

PERFORMANCE 

A majority of the performance requirements were listed 

in the above sections.  Basically, the ip6tables will 

interact with the NAT code in a manner that does not prove 

to be a hindrance to network operations.  The exact 

threshold for this is not static, but rather it varies from 

user to user, since a network administrator with a gigabit 

Ethernet LAN may have higher performance requirements than 

a home user with a small LAN connecting to the Internet via 

a 56K modem.   

The maximum number of concurrent users will be the 

number of users within the administrator group, as the NAT 

rules are only able to altered by a user with administrator 

privilege.  In general there will be no necessity for 

multiple users to alter the nat tables, unless there is 

some sort of cooperative environment agreed upon by 

multiple users of the LAN.  Also, any user that requests to 

alter the nat table must have administrator privilege.  

The maximum number of concurrent connections will be 

limited by the maximum number of ports available multiplied 

by the number of public IP addresses the NAT device 

maintains for external translation.  The expected usage 

pattern will be constant.  Once configured and operational, 

the only further alterations to the nat table should be 

when external IP address bindings are reconfigured.  
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The tolerance for error will be fairly low, as any 

error in translation will result in undesired network 

operation and the probable loss of connectivity to the 

Internet.  Workload expectations for the protocol will 

depend on the amount of network traffic passing through the 

computer.  Critical resources for this program are Internet 

connectivity and adequate processor speed. 

PARALLELISM 

This NAT development does not require any parallelism, 

as it is an in-line function.  When a packet enters the NIC 

interface netfilter hooks are called.  These hooks traverse 

a list of processes that have requested access to the 

packet in a priority queue.  One of these processes is 

always ip6tables, and within ip6tables is the NAT code.  

While the NAT process is running and manipulating the 

packet, there will not be any other processes manipulating 

the packet simultaneously.   

CONCURRENT ENGINEERING 

There will not be any concurrent engineering with 

respect to development, testing, and deployment of this 

program.  As was stated with parallelism, there is no 

necessity for parallel access, engineering, or development.   

SECURITY 

The process will have all of the security 

characteristics of ip6tables, the user interface to 

netfilter. Currently, ip6tables cannot be edited unless the 

user has administrator privileges.  Therefore, the NAT 

process will not be accessible to any user other than root 

or those users with root permissions.  Allowing any users 

to edit any of the tables for ip6tables would leave the 

system open to any number of security violations as a 
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malicious user could set mappings and intercept traffic, as 

well as, masquerade as any user on the LAN.   

IMPLEMENTATION PLAN 

Development of NAT for IPv6 will occur on a modified 

2.6.5 Linux kernel designed to support connection tracking.  

The necessary IPv4 NAT code will be ported and modified 

into the IPv6 environment.  Initially, the focus was to 

enable connection tracking for IPv6 before the development 

of the NAT functionality. However, a modified 2.6.5 Linux 

kernel was released that enabled this functionality. From 

this point, the nat table to the ip6tables code and its 

respective functionality will be introduced.  After this 

foundation is laid, the desired NAT functionality will be 

implemented in a method similar to IPv4.  Finally, open-

source testing suites will be used to test module 

compatibility, and the MYSEA IPv6 NAT testbed will be used 

as method for testing the functionality. 
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APPENDIX C. SOURCE CODE 

This appendix contains all the source code for files 

within the Linux netfilter suite for IPv6 that were either 

altered or created in order to support NAT in IPv6. The 

altered files contain the inserted code.  The created code 

contains a header that declares it as such. 

 

/INCLUDE/LINUX/NETFILTER_IPV6/IP6_CONNTRACK.H 

 
/* 
 * Copyright (C)2003 USAGI/WIDE Project 
 * 
 * Authors: 
 * Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> 
 * 
 * Based on: include/linux/netfilter_ipv4/ip_conntrack.h 
 * 
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 * 
 * 24-May-2004  : Ported application helper data union for later use - 
TB MP 
 *            : Ported NAT helper connection tracking data union for 
later use - TB MP  
 */ 

 
 

/* per expectation: application helper private data */ 
union ip6_conntrack_expect_help { 
 /* insert conntrack helper private data (expect) here */ 
 struct ip6_ct_ftp_expect exp_ftp_info; 
         
 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * *  
 * TB MP - This is where nat helper private data goes.  Not ported by 
USAGI.  This was  
 * ported, however it was not used because the thesis only deals with 
basic NAT.    
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * */  
 
#ifdef CONFIG_IP6_NF_NAT_NEEDED 
 union { 
  /* insert nat helper private data (expect) here */ 
 } nat; 
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#endif 
 
  /*TB MP - END NAT CODE*/  
 
}; 
 
 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * *  
 * TB MP - Nat helper information for connection tracking goes here.  
Not ported by USAGI. 
 * This was ported, however it was not used because the thesis only 
deals with basic NAT. 
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * */ 
    
#ifdef CONFIG_IP6_NF_NAT_NEEDED 
#include <linux/netfilter_ipv6/ip6_nat.h> 
 
/* per conntrack: nat application helper private data */ 
union ip6_conntrack_nat_help { 
 /* insert nat helper private data here */ 
 
}; 
 
#endif 
 
/*TB MP - END NAT CODE*/ 
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/NET/IPV6/NETFILTER/IP6_CONNTRACK_CORE.C 

/* 
 * IPv6 Connection Tracking 
 * Linux INET6 implementation 
 * 
 * Copyright (C)2003 USAGI/WIDE Project 
 * 
 * Authors: 
 * Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> 
 * 
 * Based on: net/ipv4/netfilter/ip_conntrack_core.c 
 * 
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 * 
 * 24-May-2004: Ported NAT code for ICMP tracking - TB MP 
 *            : Ported NAT code to reverse connection direction - TB MP 
 *            : Ported NAT function that expects a connection change - 
TB MP  
 */ 

 

struct ip6_conntrack * 
icmp6_error_track(struct sk_buff *skb, 
    unsigned int icmp6off, 
    enum ip6_conntrack_info *ctinfo, 
    unsigned int hooknum) 
{ 
 
 struct ip6_conntrack_tuple intuple, origtuple; 
 struct ip6_conntrack_tuple_hash *h; 
 struct ipv6hdr *ip6h; 
 struct icmp6hdr hdr; 
 struct ipv6hdr inip6h; 
 unsigned int inip6off; 
 struct ip6_conntrack_protocol *inproto; 
 u_int8_t inprotonum; 
 unsigned int inprotoff; 
 IP6_NF_ASSERT(skb->nfct == NULL); 
 
 ip6h = skb->nh.ipv6h; 
 if (skb_copy_bits(skb, icmp6off, &hdr, sizeof(hdr)) != 0) { 
  DEBUGP("icmp_error_track: Can't copy ICMPv6 hdr.\n"); 
  return NULL; 
 } 
  
 if (hdr.icmp6_type >= 128){ 
  return NULL; 
 } 
 /* 
  * Should I ignore invalid ICMPv6 error here ? 
  * ex) ICMPv6 error in ICMPv6 error, Fragmented packet, and so 
on. 
  * - kozakai 
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  */ 
 
 /* Why not check checksum in IPv4 conntrack ? - kozakai */ 
 /* Ignore it if the checksum's bogus. */ 
 
 
 if (csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr, skb->len - 
icmp6off, 
       IPPROTO_ICMPV6, 
       skb_checksum(skb, icmp6off, 
      skb->len - icmp6off, 0))) { 
  DEBUGP("ICMPv6 checksum failed\n"); 
  return NULL; 
 } 
 
 inip6off = icmp6off + sizeof(hdr); 
 
 
 if (skb_copy_bits(skb, inip6off, &inip6h, sizeof(inip6h)) != 0) { 
  DEBUGP("Can't copy inner IPv6 hdr.\n"); 
  return NULL; 
 } 
 
 inprotonum = inip6h.nexthdr; 
 inprotoff = ip6_ct_skip_exthdr(skb, inip6off + sizeof(inip6h), 
           &inprotonum, 
           skb->len - inip6off - sizeof(inip6h)); 
 
 if (inprotoff < 0 || inprotoff > skb->len 
     || inprotonum == NEXTHDR_FRAGMENT) { 
  DEBUGP("icmp6_error: Can't find protocol header in ICMPv6 
payload.\n"); 
  return NULL; 
 } 
 
 inproto = ip6_ct_find_proto(inprotonum); 
 /* Are they talking about one of our connections? */ 
 if (!ip6_get_tuple(&inip6h, skb, inprotoff, inprotonum, 
      &origtuple, inproto)) { 
  DEBUGP("icmp6_error: ! get_tuple p=%u\n", inprotonum); 
  return NULL; 
 } 
 
 /* Ordinarily, we'd expect the inverted tupleproto, but it's 
    been preserved inside the ICMP. */ 
 
 if (!invert_tuple(&intuple, &origtuple, inproto)) { 
  DEBUGP("icmp6_error_track: Can't invert tuple\n"); 
  return NULL; 
 } 
 
 *ctinfo = IP6_CT_RELATED; 
 h = ip6_conntrack_find_get(&intuple, NULL); 
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/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * *  
 * TB MP - Code necessary for NAT that was not originally ported over 
to IPv6 with the USAGI 
 * connection tracking port. 
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * */ 
  if (!h) { 
 
  /* Locally generated ICMPs will match inverted if they 
     haven't been SNAT'ed yet */ 
  /* FIXME: NAT code has to handle half-done double NAT --RR 
*/ 
   if (hooknum == NF_IP6_LOCAL_OUT){ 
     h = ip6_conntrack_find_get(&origtuple, NULL); 
 
     /*TB MP - END NAT CODE*/  
  
   } 
   if (!h) { 
    DEBUGP("icmp6_error_track: no match\n"); 
     return NULL; 
   } 
    
 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * *  
 * TB MP - Code necessary for NAT that was not originally ported over 
to IPv6 with the USAGI 
 * connection tracking port. 
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * */ 
 
   /*Reverse direction from that found */ 
   if (DIRECTION(h) != IP6_CT_DIR_REPLY){ 
     *ctinfo += IP6_CT_IS_REPLY; 
   } 
   /*TB MP - END NAT CODE*/ 
 
 
  } else { 
     if (DIRECTION(h) == IP6_CT_DIR_REPLY){ 
       *ctinfo += IP6_CT_IS_REPLY; 
     } 
  } 
 
 /* Update skb to refer to this connection */ 
 skb->nfct = &h->ctrack->infos[*ctinfo]; 
 return h->ctrack; 
} 
 
 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * *  
 * TB MP - Code necessary for NAT that was not originally ported over 
to IPv6 with the USAGI 
 * connection tracking port. 
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 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * */ 
int ip6_conntrack_change_expect(struct ip6_conntrack_expect *expect, 
          struct ip6_conntrack_tuple *newtuple) 
{ 
 int ret; 
 MUST_BE_READ_LOCKED(&ip6_conntrack_lock); 
 WRITE_LOCK(&ip6_conntrack_expect_tuple_lock); 
 DEBUGP("change_expect:\n"); 
 DEBUGP("exp tuple: "); DUMP_TUPLE(&expect->tuple); 
 DEBUGP("exp mask:  "); DUMP_TUPLE(&expect->mask); 
 DEBUGP("newtuple:  "); DUMP_TUPLE(newtuple); 
 if (expect->ct_tuple.dst.protonum == 0) { 
  /* Never seen before */ 
  DEBUGP("change expect: never seen before\n"); 
  if (!ip6_ct_tuple_equal(&expect->tuple, newtuple)  
      && LIST_FIND(&ip6_conntrack_expect_list, expect_clash, 
     struct ip6_conntrack_expect *, newtuple, &expect->mask))  

{ 
 
   /* Force NAT to find an unused tuple */ 
   ret = -1; 
  } else { 

memcpy(&expect->ct_tuple, &expect->tuple, 
sizeof(expect->tuple)); 
memcpy(&expect->tuple, newtuple, sizeof(expect-
>tuple)); 

   ret = 0; 
  } 
 } else { 
  /* Resent packet */ 
  DEBUGP("change expect: resent packet\n"); 
  if (ip6_ct_tuple_equal(&expect->tuple, newtuple)) { 
   ret = 0; 
  } else { 
   /* Force NAT to choose again the same port */ 
   ret = -1; 
  } 
 } 
 WRITE_UNLOCK(&ip6_conntrack_expect_tuple_lock); 
 return ret; 
} 
 
/* TB MP - END NAT CODE*/ 
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/INCLUDE/LINUX/NETFILTER_IPV6/IP6_NAT.H 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: include/linux/ip_nat.h 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
#ifndef _IP6_NAT_H 
#define _IP6_NAT_H 
#include <linux/netfilter_ipv6.h> 
#include <linux/netfilter_ipv6/ip6_conntrack_tuple.h> 
 
#define IP6_NAT_MAPPING_TYPE_MAX_NAMELEN 16 
 
enum ip6_nat_manip_type 
{ 
 IP6_NAT_MANIP_SRC, 
 IP6_NAT_MANIP_DST 
}; 
 
#ifndef CONFIG_IP6_NF_NAT_LOCAL 
/* SRC manip occurs only on POST_ROUTING */ 
#define HOOK2MANIP(hooknum) ((hooknum) != NF_IP6_POST_ROUTING) 
#else 
/* SRC manip occurs POST_ROUTING or LOCAL_IN */ 
#define HOOK2MANIP(hooknum) ((hooknum) != NF_IP6_POST_ROUTING && 
(hooknum) != NF_IP6_LOCAL_IN) 
#endif 
 
#define IP6_NAT_RANGE_MAP_IPS 1 
#define IP6_NAT_RANGE_PROTO_SPECIFIED 2 
/* Used internally by get_unique_tuple(). */ 
#define IP6_NAT_RANGE_FULL 4 
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/* NAT sequence number modifications */ 
struct ip6_nat_seq { 
 /* position of the last TCP sequence number  
  * modification (if any) */ 
 u_int32_t correction_pos; 
 /* sequence number offset before and after last modification */ 
 int32_t offset_before, offset_after; 
}; 
 
/* Single range specification. */ 
struct ip6_nat_range 
{ 
 /* Set to OR of flags above. */ 
 unsigned int flags; 
 
 /* Inclusive: network order. */ 
 struct in6_addr min_ip, max_ip; 
 
 /* Inclusive: network order */ 
 union ip6_conntrack_manip_proto min, max; 
}; 
 
/* A range consists of an array of 1 or more ip6_nat_range */ 
struct ip6_nat_multi_range 
{ 
 unsigned int rangesize; 
 
 /* hangs off end. */ 
 struct ip6_nat_range range[1]; 
}; 
 
/* Worst case: local-out manip + 1 post-routing, and reverse dirn. */ 
#define IP6_NAT_MAX_MANIPS (2*3) 
 
struct ip6_nat_info_manip 
{ 
 /* The direction. */ 
 u_int8_t direction; 
 
 /* Which hook the manipulation happens on. */ 
 u_int8_t hooknum; 
 
 /* The manipulation type. */ 
 u_int8_t maniptype; 
 
 /* Manipulations to occur at each conntrack in this dirn. */ 
 struct ip6_conntrack_manip manip; 
}; 
 
#ifdef __KERNEL__ 
#include <linux/list.h> 
#include <linux/netfilter_ipv6/lockhelp.h> 
 
/* Protects NAT hash tables, and NAT-private part of conntracks. */ 
DECLARE_RWLOCK_EXTERN(ip6_nat_lock); 
 
/* Hashes for by-source and IP/protocol. */ 
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struct ip6_nat_hash 
{ 
 struct list_head list; 
 
 /* conntrack we're embedded in: NULL if not in hash. */ 
 struct ip6_conntrack *conntrack; 
}; 
 
/* The structure embedded in the conntrack structure. */ 
struct ip6_nat_info 
{ 
 /* Set to zero when conntrack created: bitmask of maniptypes */ 
 int initialized; 
 
 unsigned int num_manips; 
 
 /* Manipulations to be done on this conntrack. */ 
 struct ip6_nat_info_manip manips[IP6_NAT_MAX_MANIPS]; 
 
 struct ip6_nat_hash bysource, byipsproto; 
 
 /* Helper (NULL if none). */ 
 struct ip6_nat_helper *helper; 
 
 struct ip6_nat_seq seq[IP6_CT_DIR_MAX]; 
}; 
 
/* Set up the info structure to map into this range. */ 
extern unsigned int ip6_nat_setup_info(struct ip6_conntrack *conntrack, 
          const struct ip6_nat_multi_range *mr, 
          unsigned int hooknum); 
 
/* Is this tuple already taken? (not by us)*/ 
extern int ip6_nat_used_tuple(const struct ip6_conntrack_tuple *tuple, 
        const struct ip6_conntrack *ignored_conntrack); 
 
/* Calculate relative checksum. */ 
extern u_int16_t ip6_nat_cheat_check(struct in6_addr oldvalinv, 
        struct in6_addr newval, 
        u_int16_t oldcheck); 
 
extern u_int16_t ip6_int_nat_cheat_check(u_int32_t oldvalinv, 
        u_int32_t newval, 
        u_int16_t oldcheck); 
#endif /*__KERNEL__*/ 
#endif 
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/NET/IPV6/NETFILTER/IP6_NAT_CORE.C 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: net/ipv4/netfilter/ip_nat_core.c 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
/* NAT for netfilter; shared with compatibility layer. */ 
 
/* (C) 1999-2001 Paul `Rusty' Russell 
 * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org> 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2 as 
 * published by the Free Software Foundation. 
 */ 
 
#include <linux/module.h> 
#include <linux/types.h> 
#include <linux/timer.h> 
#include <linux/skbuff.h> 
#include <linux/netfilter_ipv6.h> 
#include <linux/vmalloc.h> 
#include <net/checksum.h> 
#include <net/icmp.h> 
#include <net/ipv6.h> 
#include <net/tcp.h>  /* For tcp_prot in getorigdst */ 
#include <linux/icmpv6.h> 
#include <linux/udp.h> 
 
#define IPV6_HDR_LEN (sizeof(struct ipv6hdr)) 
#define ASSERT_READ_LOCK(x) MUST_BE_READ_LOCKED(&ip6_nat_lock) 
#define ASSERT_WRITE_LOCK(x) MUST_BE_WRITE_LOCKED(&ip6_nat_lock) 
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#include <linux/netfilter_ipv6/ip6_conntrack.h> 
#include <linux/netfilter_ipv6/ip6_conntrack_core.h> 
#include <linux/netfilter_ipv6/ip6_conntrack_protocol.h> 
#include <linux/netfilter_ipv6/ip6_nat.h> 
#include <linux/netfilter_ipv6/ip6_nat_protocol.h> 
#include <linux/netfilter_ipv6/ip6_nat_core.h> 
#include <linux/netfilter_ipv6/ip6_nat_helper.h> 
#include <linux/netfilter_ipv6/ip6_conntrack_helper.h> 
#include <linux/netfilter_ipv4/listhelp.h> 
 
#if 0 
#define DEBUGP printk 
#else 
#define DEBUGP(format, args...) 
#endif 
 
DECLARE_RWLOCK(ip6_nat_lock); 
DECLARE_RWLOCK_EXTERN(ip6_conntrack_lock); 
 
/* Calculated at init based on memory size */ 
static unsigned int ip6_nat_htable_size; 
 
static struct list_head *bysource; 
static struct list_head *byipsproto; 
LIST_HEAD(ip6_protos); 
LIST_HEAD(ip6_helpers); 
 
extern struct ip6_nat_protocol ip6_unknown_nat_protocol; 
 
/* We keep extra hashes for each conntrack, for fast searching. */ 
static inline size_t 
 hash_by_ipsproto(struct in6_addr src, struct in6_addr dst, u_int16_t 
proto) 
{ 
 /* Modified src and dst, to ensure we don't create two 
           identical streams. */ 
 
 return (src.s6_addr32[0] + src.s6_addr32[1] + src.s6_addr32[2] + 
src.s6_addr32[3] + dst.s6_addr32[0] + dst.s6_addr32[1] + 
dst.s6_addr32[2] + dst.s6_addr32[3] + proto) % ip6_nat_htable_size; 
} 
 
static inline size_t 
hash_by_src(const struct ip6_conntrack_manip *manip, u_int16_t proto) 
{ 
 
 /* Original src, to ensure we map it consistently if poss. */ 
 return (manip->ip.s6_addr32[0] + manip->ip.s6_addr32[1] + manip-
>ip.s6_addr32[2] + manip->ip.s6_addr32[3] + manip->u.all + proto) % 
ip6_nat_htable_size; 
} 
 
/* Noone using conntrack by the time this called. */ 
static void ip6_nat_cleanup_conntrack(struct ip6_conntrack *conn) 
{ 
 
 struct ip6_nat_info *info = &conn->nat.info; 
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 unsigned int hs, hp; 
 
 if (!info->initialized){ 
  return; 
 } 
 
 IP6_NF_ASSERT(info->bysource.conntrack); 
 IP6_NF_ASSERT(info->byipsproto.conntrack); 
 
 hs = hash_by_src(&conn->tuplehash[IP6_CT_DIR_ORIGINAL].tuple.src, 
                  conn->tuplehash[IP6_CT_DIR_ORIGINAL] 
                  .tuple.dst.protonum); 
 
 hp = hash_by_ipsproto(conn-
>tuplehash[IP6_CT_DIR_REPLY].tuple.src.ip, 
                       conn-
>tuplehash[IP6_CT_DIR_REPLY].tuple.dst.ip, 
                       conn->tuplehash[IP6_CT_DIR_REPLY] 
                       .tuple.dst.protonum); 
 
 WRITE_LOCK(&ip6_nat_lock); 
 LIST_DELETE(&bysource[hs], &info->bysource); 
 LIST_DELETE(&byipsproto[hp], &info->byipsproto); 
 WRITE_UNLOCK(&ip6_nat_lock); 
} 
 
/* We do checksum mangling, so if they were wrong before they're still 
 * wrong.  Also works for incomplete packets (eg. ICMP dest 
 * unreachables.) */ 
 
 
 
static inline int cmp_proto(const struct ip6_nat_protocol *i, int 
proto) 
{ 
 return i->protonum == proto; 
} 
 
struct ip6_nat_protocol * 
ip6_find_nat_proto(u_int16_t protonum) 
{ 
 
 struct ip6_nat_protocol *i; 
 MUST_BE_READ_LOCKED(&ip6_nat_lock); 
 i = LIST_FIND(&ip6_protos, cmp_proto, struct ip6_nat_protocol *, 
protonum); 
 if (!i){ 
  i = &ip6_unknown_nat_protocol; 
 } 
 return i; 
} 
 
/* Is this tuple already taken? (not by us) */ 
int 
ip6_nat_used_tuple(const struct ip6_conntrack_tuple *tuple, 
    const struct ip6_conntrack *ignored_conntrack) 
{ 
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 /* Conntrack tracking doesn't keep track of outgoing tuples; only 
    incoming ones.  NAT means they don't have a fixed mapping, 
    so we invert the tuple and look for the incoming reply. 
    We could keep a separate hash if this proves too slow. */ 
 
 struct ip6_conntrack_tuple reply; 
 ip6_invert_tuplepr(&reply, tuple); 
 
 return ip6_conntrack_tuple_taken(&reply, ignored_conntrack); 
} 
 
/* Does tuple + the source manip come within the range mr */ 
static int 
in_range(const struct ip6_conntrack_tuple *tuple, 
  const struct ip6_conntrack_manip *manip, 
  const struct ip6_nat_multi_range *mr) 
{ 
 struct ip6_nat_protocol *proto = ip6_find_nat_proto(tuple-
>dst.protonum); 
 unsigned int i; 
 struct ip6_conntrack_tuple newtuple = { *manip, tuple->dst }; 
 
 for (i = 0; i < mr->rangesize; i++) { 
  /* If we are allowed to map IPs, then we must be in the 
     range specified, otherwise we must be unchanged. */ 
  if (mr->range[i].flags & IP6_NAT_RANGE_MAP_IPS) { 
   if (ntohl(newtuple.src.ip.s6_addr32[0]) < ntohl(mr-
>range[i].min_ip.s6_addr32[0]) 
       || (ntohl(newtuple.src.ip.s6_addr32[0]) 
    > ntohl(mr->range[i].max_ip.s6_addr32[0]))){ 
    continue; 
   } 
  } else { 
 
 if ((newtuple.src.ip.s6_addr32[0] != tuple->src.ip.s6_addr32[0]) || 
(newtuple.src.ip.s6_addr32[1] != tuple->src.ip.s6_addr32[1]) || 
(newtuple.src.ip.s6_addr32[2] != tuple->src.ip.s6_addr32[2]) || 
(newtuple.src.ip.s6_addr32[3] != tuple->src.ip.s6_addr32[3])){ 
                          continue; 
                          } 
 
  } 
  
  if (!(mr->range[i].flags & IP6_NAT_RANGE_PROTO_SPECIFIED) 
      || proto->in_range(&newtuple, IP6_NAT_MANIP_SRC, 
          &mr->range[i].min, &mr->range[i].max)){ 
 
   return 1; 
  } 
 } 
 return 0; 
} 
 
static inline int 
src_cmp(const struct ip6_nat_hash *i, 
 const struct ip6_conntrack_tuple *tuple, 
 const struct ip6_nat_multi_range *mr) 
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{ 
 return (i->conntrack-
>tuplehash[IP6_CT_DIR_ORIGINAL].tuple.dst.protonum 
  == tuple->dst.protonum 
  && (i->conntrack-
>tuplehash[IP6_CT_DIR_ORIGINAL].tuple.src.ip.s6_addr32[0] 
      == tuple->src.ip.s6_addr32[0]  
      && i->conntrack-
>tuplehash[IP6_CT_DIR_ORIGINAL].tuple.src.ip.s6_addr32[1] 
      == tuple->src.ip.s6_addr32[1]  
      && i->conntrack-
>tuplehash[IP6_CT_DIR_ORIGINAL].tuple.src.ip.s6_addr32[2] 
      == tuple->src.ip.s6_addr32[2]  
      && i->conntrack-
>tuplehash[IP6_CT_DIR_ORIGINAL].tuple.src.ip.s6_addr32[3] 
      == tuple->src.ip.s6_addr32[3] ) 
  && i->conntrack-
>tuplehash[IP6_CT_DIR_ORIGINAL].tuple.src.u.all 
  == tuple->src.u.all 
   && in_range(tuple, 
       &i->conntrack->tuplehash[IP6_CT_DIR_ORIGINAL] 
       .tuple.src, 
       mr)); 
} 
 
/* Only called for SRC manip */ 
static struct ip6_conntrack_manip * 
find_appropriate_src(const struct ip6_conntrack_tuple *tuple, 
       const struct ip6_nat_multi_range *mr) 
{ 
 unsigned int h = hash_by_src(&tuple->src, tuple->dst.protonum); 
 struct ip6_nat_hash *i; 
 MUST_BE_READ_LOCKED(&ip6_nat_lock); 
 i = LIST_FIND(&bysource[h], src_cmp, struct ip6_nat_hash *, 
tuple, mr); 
 if (i){ 
  return &i->conntrack-
>tuplehash[IP6_CT_DIR_ORIGINAL].tuple.src; 
 } 
 else{ 
 
 return NULL; 
 } 
} 
 
/* Simple way to iterate through all. */ 
static inline int fake_cmp(const struct ip6_nat_hash *i, 
      struct in6_addr src, struct in6_addr dst, 
u_int16_t protonum, 
      unsigned int *score, 
      const struct ip6_conntrack *conntrack) 
{ 
 /* Compare backwards: we're dealing with OUTGOING tuples, and 
           inside the conntrack is the REPLY tuple.  Don't count this 
           conntrack. */ 
 if (i->conntrack != conntrack 
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     && (i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.src.ip.s6_addr32[0] == 
dst.s6_addr32[0]  
  && i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.src.ip.s6_addr32[1] == 
dst.s6_addr32[1]  
  && i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.src.ip.s6_addr32[2] == 
dst.s6_addr32[2]  
  && i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.src.ip.s6_addr32[3] == 
dst.s6_addr32[3])  
     && (i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.dst.ip.s6_addr32[0] == 
src.s6_addr32[0] 
  && i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.dst.ip.s6_addr32[1] == 
src.s6_addr32[1] 
  && i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.dst.ip.s6_addr32[2] == 
src.s6_addr32[2] 
  && i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.dst.ip.s6_addr32[3] == 
src.s6_addr32[3]) 
     && (i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.dst.protonum 
  == protonum)) 
  (*score)++; 
 return 0; 
} 
 
static inline unsigned int 
count_maps(struct in6_addr src, struct in6_addr dst, u_int16_t 
protonum, 
    const struct ip6_conntrack *conntrack) 
{ 
 unsigned int score = 0; 
 unsigned int h; 
 
 MUST_BE_READ_LOCKED(&ip6_nat_lock); 
 h = hash_by_ipsproto(src, dst, protonum); 
 LIST_FIND(&byipsproto[h], fake_cmp, struct ip6_nat_hash *, 
           src, dst, protonum, &score, conntrack); 
 
 return score; 
} 
 
/* For [FUTURE] fragmentation handling, we want the least-used 
   src-ip/dst-ip/proto triple.  Fairness doesn't come into it.  Thus 
   if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports 
   1-65535, we don't do pro-rata allocation based on ports; we choose 
   the ip with the lowest src-ip/dst-ip/proto usage. 
 
   If an allocation then fails (eg. all 6 ports used in the 1.2.3.4 
   range), we eliminate that and try again.  This is not the most 
   efficient approach, but if you're worried about that, don't hand us 
   ranges you don't really have.  */ 
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static struct ip6_nat_range * 
find_best_ips_proto(struct ip6_conntrack_tuple *tuple, 
      const struct ip6_nat_multi_range *mr, 
      const struct ip6_conntrack *conntrack, 
      unsigned int hooknum) 
{ 
 unsigned int i; 
 struct { 
  const struct ip6_nat_range *range; 
  unsigned int score; 
  struct ip6_conntrack_tuple tuple; 
 } best = { NULL,  0xFFFFFFFF }; 
 struct in6_addr *var_ipp, *other_ipp, saved_ip, orig_dstip; 
 /*static unsigned int randomness;*/ 
 
 if (HOOK2MANIP(hooknum) == IP6_NAT_MANIP_SRC) { 
  var_ipp = &tuple->src.ip; 
  saved_ip = tuple->dst.ip; 
  other_ipp = &tuple->dst.ip; 
 } else { 
  var_ipp = &tuple->dst.ip; 
  saved_ip = tuple->src.ip; 
  other_ipp = &tuple->src.ip; 
 } 
 /* Don't do do_extra_mangle unless necessary (overrides 
           explicit socket bindings, for example) */ 
 orig_dstip = tuple->dst.ip; 
 
 IP6_NF_ASSERT(mr->rangesize >= 1); 
 for (i = 0; i < mr->rangesize; i++) { 
  /* Host order */ 
   struct in6_addr minip, maxip;  /*, j;*/ 
 
  /* Don't do ranges which are already eliminated. */ 
  if (mr->range[i].flags & IP6_NAT_RANGE_FULL) { 
   continue; 
  } 
 
  if (mr->range[i].flags & IP6_NAT_RANGE_MAP_IPS) { 
   minip.s6_addr32[0] = ntohl(mr-
>range[i].min_ip.s6_addr32[0]); 
   minip.s6_addr32[1] = ntohl(mr-
>range[i].min_ip.s6_addr32[1]); 
   minip.s6_addr32[2] = ntohl(mr-
>range[i].min_ip.s6_addr32[2]); 
   minip.s6_addr32[3] = ntohl(mr-
>range[i].min_ip.s6_addr32[3]); 
 
   maxip.s6_addr32[0] = ntohl(mr-
>range[i].max_ip.s6_addr32[0]); 
   maxip.s6_addr32[1] = ntohl(mr-
>range[i].max_ip.s6_addr32[1]); 
   maxip.s6_addr32[2] = ntohl(mr-
>range[i].max_ip.s6_addr32[2]); 
   maxip.s6_addr32[3] = ntohl(mr-
>range[i].max_ip.s6_addr32[3]); 
  }  
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  else { 
    minip.s6_addr32[0] = maxip.s6_addr32[0] = var_ipp-
>s6_addr32[0]; 
    minip.s6_addr32[1] = maxip.s6_addr32[1] = var_ipp-
>s6_addr32[1]; 
    minip.s6_addr32[2] = maxip.s6_addr32[2] = var_ipp-
>s6_addr32[2]; 
    minip.s6_addr32[3] = maxip.s6_addr32[3] = var_ipp-
>s6_addr32[3]; 
  } 
 
 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * *  
 * TB MP - Not needed by our particular implementation. This function 
was ported, but commented out because it was not tested, and was not 
part of our implementation. Our basic NAT implementation did 
 * not necessitate port translation or multiple IP address translation, 
and so calculating   
 * random IP addresses to use was not needed. 
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * */ 
 
  /* 
  randomness++; 
  for (j = 0; j < maxip.s6_addr32[0] - minip.s6_addr32[0] + 
1; j++) { 
   unsigned int score; 
 
   var_ipp->s6_addr32[0] = htonl(minip.s6_addr32[0] + 
(randomness + j)  
      % (maxip.s6_addr32[0] - 
minip.s6_addr32[0] + 1)); 
 
    Reset the other ip in case it was mangled by 
   do_extra_mangle last time.  
   other_ipp->s6_addr32[0] = saved_ip.s6_addr32[0]; 
 
#ifdef CONFIG_IP6_NF_NAT_LOCAL 
   if (hooknum == NF_IP6_LOCAL_OUT 
       && var_ipp->s6_addr32[0] != 
orig_dstip.s6_addr32[0] 
       && !do_extra_mangle(var_ipp->s6_addr32[0], 
other_ipp.s6_addr32[0])) { 
    DEBUGP("Range %u  %u:%u:%u:%u rt failed!\n", 
           i, NIP6(var_ipp->s6_addr32[0])); 
     Can't route?  This whole range part is 
      probably screwed, but keep trying 
      anyway.  
    continue; 
   } 
#endif 
 
    Count how many others map onto this.  
   score = count_maps(tuple->src.ip.s6_addr32[0], tuple-
>dst.ip.s6_addr32[0], 
        tuple->dst.protonum, conntrack); 



116 

   if (score < best.score) { 
    Optimization: doesn't get any better than 
       this.  
    if (score == 0) 
     return (struct ip6_nat_range *) 
      &mr->range[i]; 
 
    best.score = score; 
    best.tuple = *tuple; 
    best.range = &mr->range[i]; 
   } 
  } 
  */ 
  /* TB MP – END OF NAT CODE */ 
 
 
 
 } 
 *tuple = best.tuple; 
 
 /* Discard const. */ 
 return (struct ip6_nat_range *)best.range; 
} 
 
/* Fast version doesn't iterate through hash chains, but only handles 
   common case of single IP address (null NAT, masquerade) */ 
static struct ip6_nat_range * 
find_best_ips_proto_fast(struct ip6_conntrack_tuple *tuple, 
    const struct ip6_nat_multi_range *mr, 
    const struct ip6_conntrack *conntrack, 
    unsigned int hooknum) 
{ 
 
 
 if (mr->rangesize != 1 
     || (mr->range[0].flags & IP6_NAT_RANGE_FULL) 
     || ((mr->range[0].flags & IP6_NAT_RANGE_MAP_IPS) 
  && (mr->range[0].min_ip.s6_addr32[0] != mr-
>range[0].max_ip.s6_addr32[0] 
      || mr->range[0].min_ip.s6_addr32[1] != mr-
>range[0].max_ip.s6_addr32[1] 
      || mr->range[0].min_ip.s6_addr32[2] != mr-
>range[0].max_ip.s6_addr32[2] 
      || mr->range[0].min_ip.s6_addr32[3] != mr-
>range[0].max_ip.s6_addr32[3]) 
 
  )){ 
    
 return find_best_ips_proto(tuple, mr, conntrack, hooknum); 
 } 
 if (mr->range[0].flags & IP6_NAT_RANGE_MAP_IPS) { 
   if (HOOK2MANIP(hooknum) == IP6_NAT_MANIP_SRC){ 
  
   tuple->src.ip = mr->range[0].min_ip; 
 } 
  else { 
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   /* Only do extra mangle when required (breaks 
                           socket binding) */ 
#ifdef CONFIG_IP6_NF_NAT_LOCAL 
   if ((tuple->dst.ip.s6_addr32[0] != mr-
>range[0].min_ip.s6_addr32[0] 
        || tuple->dst.ip.s6_addr32[1] != mr-
>range[0].min_ip.s6_addr32[1] 
        || tuple->dst.ip.s6_addr32[2] != mr-
>range[0].min_ip.s6_addr32[2] 
        || tuple->dst.ip.s6_addr32[3] != mr-
>range[0].min_ip.s6_addr32[3]) 
       && hooknum == NF_IP6_LOCAL_OUT){ 
 
    return NULL; 
   } 
#endif 
 
   
   tuple->dst.ip = mr->range[0].min_ip; 
  } 
 } 
 
 /* Discard const. */ 
 
  
 return (struct ip6_nat_range *)&mr->range[0]; 
} 
 
static int 
get_unique_tuple(struct ip6_conntrack_tuple *tuple, 
   const struct ip6_conntrack_tuple *orig_tuple, 
   const struct ip6_nat_multi_range *mrr, 
   struct ip6_conntrack *conntrack, 
   unsigned int hooknum) 
{ 
 
 
 struct ip6_nat_protocol *proto 
  = ip6_find_nat_proto(orig_tuple->dst.protonum); 
 struct ip6_nat_range *rptr; 
 unsigned int i; 
 int ret; 
 
 /* We temporarily use flags for marking full parts, but we 
    always clean up afterwards */ 
 struct ip6_nat_multi_range *mr = (void *)mrr; 
 
 /* 1) If this srcip/proto/src-proto-part is currently mapped, 
    and that same mapping gives a unique tuple within the given 
    range, use that. 
 
    This is only required for source (ie. NAT/masq) mappings. 
    So far, we don't do local source mappings, so multiple 
    manips not an issue.  */ 
 
 
 if (hooknum == NF_IP6_POST_ROUTING) { 
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  struct ip6_conntrack_manip *manip; 
 
 
  manip = find_appropriate_src(orig_tuple, mr); 
 
  
  if (manip) { 
   /* Apply same source manipulation. */ 
   *tuple = ((struct ip6_conntrack_tuple) 
      { *manip, orig_tuple->dst }); 
   DEBUGP("get_unique_tuple: Found current src map\n"); 
 
 
 if (!ip6_nat_used_tuple(tuple, conntrack)){ 
    return 1; 
 } 
  } 
 } 
 
 /* 2) Select the least-used IP/proto combination in the given 
    range. 
 */ 
 *tuple = *orig_tuple; 
 
 while ((rptr = find_best_ips_proto_fast(tuple, mr, conntrack, 
hooknum)) 
        != NULL) { 
  DEBUGP("Found best for "); DUMP_TUPLE(tuple); 
  /* 3) The per-protocol part of the manip is made to 
     map into the range to make a unique tuple. */ 
 
  /* Only bother mapping if it's not already in range 
     and unique */ 
 
  if ((!(rptr->flags & IP6_NAT_RANGE_PROTO_SPECIFIED) 
       || proto->in_range(tuple, HOOK2MANIP(hooknum), 
     &rptr->min, &rptr->max)) 
      && !ip6_nat_used_tuple(tuple, conntrack)) { 
  ret = 1; 
 
  goto clear_fulls; 
  } else { 
  
   if (proto->unique_tuple(tuple, rptr, 
      HOOK2MANIP(hooknum), 
      conntrack)) { 
    /* Must be unique. */ 
    IP6_NF_ASSERT(!ip6_nat_used_tuple(tuple, 
        conntrack)); 
  
    ret = 1; 
    goto clear_fulls; 
 
   } else if (HOOK2MANIP(hooknum) == IP6_NAT_MANIP_DST) 
{ 
    /* Try implicit source NAT; protocol 
                                   may be able to play with ports to 
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                                   make it unique. */ 
 
    struct ip6_nat_range r 
     = { IP6_NAT_RANGE_MAP_IPS,  
         tuple->src.ip, tuple->src.ip, 
         { 0 }, { 0 } }; 
    DEBUGP("Trying implicit mapping\n"); 
 
    if (proto->unique_tuple(tuple, &r, 
       IP6_NAT_MANIP_SRC, 
       conntrack)) { 
     /* Must be unique. */ 
 
     IP6_NF_ASSERT(!ip6_nat_used_tuple 
           (tuple, conntrack)); 
 
     ret = 1; 
     goto clear_fulls; 
    } 
   } 
   DEBUGP("Protocol can't get unique tuple %u.\n", 
          hooknum); 
  } 
 
  /* Eliminate that from range, and try again. */ 
 
  rptr->flags |= IP6_NAT_RANGE_FULL; 
  *tuple = *orig_tuple; 
 } 
 ret = 0; 
 
 clear_fulls: 
 /* Clear full flags. */ 
 IP6_NF_ASSERT(mr->rangesize >= 1); 
 for (i = 0; i < mr->rangesize; i++) 
  mr->range[i].flags &= ~IP6_NAT_RANGE_FULL; 
 
 
 return ret; 
} 
 
static inline int 
helper_cmp(const struct ip6_nat_helper *helper, 
    const struct ip6_conntrack_tuple *tuple) 
{ 
 return ip6_ct_tuple_mask_cmp(tuple, &helper->tuple, &helper-
>mask); 
} 
 
/* Where to manip the reply packets (will be reverse manip). */ 
static unsigned int opposite_hook[NF_IP6_NUMHOOKS] 
= { [NF_IP6_PRE_ROUTING] = NF_IP6_POST_ROUTING, 
    [NF_IP6_POST_ROUTING] = NF_IP6_PRE_ROUTING, 
#ifdef CONFIG_IP6_NF_NAT_LOCAL 
    [NF_IP6_LOCAL_OUT] = NF_IP6_LOCAL_IN, 
    [NF_IP6_LOCAL_IN] = NF_IP6_LOCAL_OUT, 
#endif 
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}; 
 
unsigned int 
ip6_nat_setup_info(struct ip6_conntrack *conntrack, 
    const struct ip6_nat_multi_range *mr, 
    unsigned int hooknum) 
{ 
 struct ip6_conntrack_tuple new_tuple, inv_tuple, reply; 
 struct ip6_conntrack_tuple orig_tp; 
 struct ip6_nat_info *info = &conntrack->nat.info; 
 int in_hashes = info->initialized; 
 
 MUST_BE_WRITE_LOCKED(&ip6_nat_lock); 
 
 IP6_NF_ASSERT(hooknum == NF_IP6_PRE_ROUTING 
       || hooknum == NF_IP6_POST_ROUTING 
       || hooknum == NF_IP6_LOCAL_OUT); 
 
 IP6_NF_ASSERT(info->num_manips < IP6_NAT_MAX_MANIPS); 
 IP6_NF_ASSERT(!(info->initialized & (1 << HOOK2MANIP(hooknum)))); 
 
 /* What we've got will look like inverse of reply. Normally 
    this is what is in the conntrack, except for prior 
    manipulations (future optimization: if num_manips == 0, 
    orig_tp = 
    conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple) */ 
 
 ip6_invert_tuplepr(&orig_tp, 
         &conntrack->tuplehash[IP6_CT_DIR_REPLY].tuple); 
#if 1 
 { 
 unsigned int i; 
 DEBUGP("Hook %u (%s), ", hooknum, 
        HOOK2MANIP(hooknum)==IP6_NAT_MANIP_SRC ? "SRC" : "DST"); 
 DUMP_TUPLE(&orig_tp); 
 
 DEBUGP("Range %p: ", mr); 
 for (i = 0; i < mr->rangesize; i++) { 
  DEBUGP("%u:%s%s%s   %x:%x:%x:%x:%x:%x:%x:%x -  
%x:%x:%x:%x:%x:%x:%x:%x %u - %u\n", 
         i, 
         (mr->range[i].flags & IP6_NAT_RANGE_MAP_IPS) 
         ? " MAP_IPS" : "", 
         (mr->range[i].flags 
   & IP6_NAT_RANGE_PROTO_SPECIFIED) 
         ? " PROTO_SPECIFIED" : "", 
         (mr->range[i].flags & IP6_NAT_RANGE_FULL) 
         ? " FULL" : "", 
         NIP6(mr->range[i].min_ip), 
         NIP6(mr->range[i].max_ip), 
         mr->range[i].min.all, 
         mr->range[i].max.all); 
 } 
 } 
#endif 
 
 do { 
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  if (!get_unique_tuple(&new_tuple, &orig_tp, mr, conntrack, 
          hooknum)) { 
   DEBUGP("ip6_nat_setup_info: Can't get unique for 
%p.\n", 
          conntrack); 
   return NF_DROP; 
  } 
 
   
 
#if 0 
 
 
  DEBUGP("Hook %u (%s) %p\n", hooknum, 
         HOOK2MANIP(hooknum)==IP6_NAT_MANIP_SRC ? "SRC" : 
"DST", 
         conntrack); 
  DEBUGP("Original: "); 
 
 
  DUMP_TUPLE(&orig_tp); 
  DEBUGP("New: "); 
 
 
  DUMP_TUPLE(&new_tuple); 
#endif 
 
  /* We now have two tuples (SRCIP/SRCPT/DSTIP/DSTPT): 
     the original (A/B/C/D') and the mangled one (E/F/G/H'). 
     We're only allowed to work with the SRC per-proto 
     part, so we create inverses of both to start, then 
     derive the other fields we need.  */ 
 
  /* Reply connection: simply invert the new tuple 
                   (G/H/E/F') */ 
 
  ip6_invert_tuplepr(&reply, &new_tuple); 
 
  /* Alter conntrack table so it recognizes replies. 
                   If fail this race (reply tuple now used), repeat. */ 
 
 
 
 } while (!ip6_conntrack_alter_reply(conntrack, &reply)); 
 
 /* FIXME: We can simply used existing conntrack reply tuple 
           here --RR */ 
 /* Create inverse of original: C/D/A/B' */ 
 
 ip6_invert_tuplepr(&inv_tuple, &orig_tp); 
 
 /* Has source changed?. */ 
 
 if (!ip6_ct_tuple_src_equal(&new_tuple, &orig_tp)) { 
 
  /* In this direction, a source manip. */ 
  info->manips[info->num_manips++] = 



122 

   ((struct ip6_nat_info_manip) 
    { IP6_CT_DIR_ORIGINAL, hooknum, 
      IP6_NAT_MANIP_SRC, new_tuple.src }); 
 
 
 
  IP6_NF_ASSERT(info->num_manips < IP6_NAT_MAX_MANIPS); 
 
 
  /* In the reverse direction, a destination manip. */ 
  info->manips[info->num_manips++] = 
   ((struct ip6_nat_info_manip) 
    { IP6_CT_DIR_REPLY, opposite_hook[hooknum], 
      IP6_NAT_MANIP_DST, orig_tp.src }); 
  IP6_NF_ASSERT(info->num_manips <= IP6_NAT_MAX_MANIPS); 
 } 
 
 /* Has destination changed? */ 
 if (!ip6_ct_tuple_dst_equal(&new_tuple, &orig_tp)) { 
 /* In this direction, a destination manip */ 
  info->manips[info->num_manips++] = 
   ((struct ip6_nat_info_manip) 
    { IP6_CT_DIR_ORIGINAL, hooknum, 
      IP6_NAT_MANIP_DST, reply.src }); 
  IP6_NF_ASSERT(info->num_manips < IP6_NAT_MAX_MANIPS); 
  /* In the reverse direction, a source manip. */ 
  info->manips[info->num_manips++] = 
   ((struct ip6_nat_info_manip) 
    { IP6_CT_DIR_REPLY, opposite_hook[hooknum], 
      IP6_NAT_MANIP_SRC, inv_tuple.src }); 
 
  IP6_NF_ASSERT(info->num_manips <= IP6_NAT_MAX_MANIPS); 
 } 
 
 /* If there's a helper, assign it; based on new tuple. */ 
 if (!conntrack->master){ 
  info->helper = LIST_FIND(&ip6_helpers, helper_cmp, struct 
ip6_nat_helper *, 
      &reply); 
 } 
 /* It's done. */ 
 info->initialized |= (1 << HOOK2MANIP(hooknum)); 
 if (in_hashes) { 
 IP6_NF_ASSERT(info->bysource.conntrack); 
  ip6_replace_in_hashes(conntrack, info); 
 } else { 
  ip6_place_in_hashes(conntrack, info); 
 } 
 return NF_ACCEPT; 
} 
 
void ip6_replace_in_hashes(struct ip6_conntrack *conntrack, 
         struct ip6_nat_info *info) 
{ 
 
 /* Source has changed, so replace in hashes. */ 
 unsigned int srchash 
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  = hash_by_src(&conntrack->tuplehash[IP6_CT_DIR_ORIGINAL] 
         .tuple.src, 
         conntrack->tuplehash[IP6_CT_DIR_ORIGINAL] 
         .tuple.dst.protonum); 
 /* We place packet as seen OUTGOUNG in byips_proto hash 
           (ie. reverse dst and src of reply packet. */ 
 unsigned int ipsprotohash 
  = hash_by_ipsproto(conntrack->tuplehash[IP6_CT_DIR_REPLY] 
       .tuple.dst.ip, 
       conntrack->tuplehash[IP6_CT_DIR_REPLY] 
       .tuple.src.ip, 
       conntrack->tuplehash[IP6_CT_DIR_REPLY] 
       .tuple.dst.protonum); 
 
 IP6_NF_ASSERT(info->bysource.conntrack == conntrack); 
 MUST_BE_WRITE_LOCKED(&ip6_nat_lock); 
 list_del(&info->bysource.list); 
 list_del(&info->byipsproto.list); 
 list_prepend(&bysource[srchash], &info->bysource); 
 list_prepend(&byipsproto[ipsprotohash], &info->byipsproto); 
} 
 
void ip6_place_in_hashes(struct ip6_conntrack *conntrack, 
       struct ip6_nat_info *info) 
{ 
 unsigned int srchash 
  = hash_by_src(&conntrack->tuplehash[IP6_CT_DIR_ORIGINAL] 
         .tuple.src, 
         conntrack->tuplehash[IP6_CT_DIR_ORIGINAL] 
         .tuple.dst.protonum); 
 /* We place packet as seen OUTGOUNG in byips_proto hash 
           (ie. reverse dst and src of reply packet. */ 
 unsigned int ipsprotohash 
  = hash_by_ipsproto(conntrack->tuplehash[IP6_CT_DIR_REPLY] 
       .tuple.dst.ip, 
       conntrack->tuplehash[IP6_CT_DIR_REPLY] 
       .tuple.src.ip, 
       conntrack->tuplehash[IP6_CT_DIR_REPLY] 
       .tuple.dst.protonum); 
 
 IP6_NF_ASSERT(!info->bysource.conntrack); 
 MUST_BE_WRITE_LOCKED(&ip6_nat_lock); 
 info->byipsproto.conntrack = conntrack; 
 info->bysource.conntrack = conntrack; 
 list_prepend(&bysource[srchash], &info->bysource); 
 list_prepend(&byipsproto[ipsprotohash], &info->byipsproto); 
} 
 
 
 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * *  
 * TB MP - The manip_pkt function necessitated some changes due to the 
introduction of  
 * a pseudo-header to ICMPv6 header checksum calculation and the 
removal of the IP header  
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 * checksum.  In IPv4, the checksum of the ICMP packet was calculated 
first, then the IP 
 * addresses were translated and an IP checksum calculated.  IPv6 no 
longer has a checksum 
 * in the header, so those checksum calculations were removed.  Since  
the translated IP addresses need to be part of the ICMP pseudo-header, 
the order of operations in this function 
 * was switched so that the IP addresses are translated first, then the 
upper layer header gets 
 * manipulated. 
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * */ 
 
/* Returns true if succeeded. */ 
static int 
manip_pkt(u_int16_t proto, 
   struct sk_buff **pskb, 
   unsigned int ipv6hdroff, 
   const struct ip6_conntrack_manip *manip, 
   enum ip6_nat_manip_type maniptype) 
{ 
 struct ipv6hdr *ipv6h; 
 (*pskb)->nfcache |= NFC_ALTERED; 
  if (!skb_ip6_make_writable(pskb, ipv6hdroff+sizeof(ipv6h))){ 
  return 0; 
 } 
 
 ipv6h = (void *)(*pskb)->data + ipv6hdroff; 
 if (maniptype == IP6_NAT_MANIP_SRC) { 
 
 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * *  
 * TB MP - IPv6 headers do not have checksums, therefore these checksum 
calculations are 
 * not necessary. The IPv4 code that was here:    
 * 
 * iph->check = ip_nat_cheat_check(~iph->saddr, manip->ip, 
 *     iph->check); 
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * */ 
 
   ipv6h->saddr = manip->ip; 
 
 } else { 
 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * *  
 * TB MP - IPv6 headers do not have checksums, therefore these checksum 
calculations are 
 * not necessary. The IPv4 code that was here:    
 * 
 * iph->check = ip_nat_cheat_check(~iph->saddr, manip->ip, 
 *     iph->check); 
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * */  
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   ipv6h->daddr = manip->ip; 
 } 
 
 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * *  
 * TB MP - This part manipulates the upper layer header information 
using the new IP addresses. 
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * */  
 
 /* Manipulate protcol part. */ 
 if (!ip6_find_nat_proto(proto)->manip_pkt(pskb, 
          ipv6hdroff + IPV6_HDR_LEN, 
      manip, maniptype)){ 
  return 0; 
 } 
 ipv6h = (void *)(*pskb)->data + ipv6hdroff; 
 return 1; 
} 
 
static inline int exp_for_packet(struct ip6_conntrack_expect *exp, 
            struct sk_buff *skb, 
     unsigned int dataoff) 
{ 
 struct ip6_conntrack_protocol *proto; 
 int ret = 1; 
 
 MUST_BE_READ_LOCKED(&ip6_conntrack_lock); 
 proto = __ip6_ct_find_proto(skb->nh.ipv6h->nexthdr); 
 if (proto->exp_matches_pkt) 
  ret = proto->exp_matches_pkt(exp, skb, dataoff); 
 
 return ret; 
} 
 
/* Do packet manipulations according to binding. */ 
unsigned int 
ip6_do_bindings(struct ip6_conntrack *ct, 
     enum ip6_conntrack_info ctinfo, 
     struct ip6_nat_info *info, 
     unsigned int hooknum, 
     struct sk_buff **pskb, 
     unsigned int dataoff) 
{ 
 unsigned int i; 
 struct ip6_nat_helper *helper; 
 enum ip6_conntrack_dir dir = CTINFO2DIR(ctinfo); 
 int proto = (*pskb)->nh.ipv6h->nexthdr; 
 
 /* Need nat lock to protect against modification, but neither 
    conntrack (referenced) and helper (deleted with 
    synchronize_bh()) can vanish. */ 
 
 READ_LOCK(&ip6_nat_lock); 
 
 for (i = 0; i < info->num_manips; i++) { 
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  if (info->manips[i].direction == dir 
      && info->manips[i].hooknum == hooknum) { 
   DEBUGP("Mangling %p: %s to  %x:%x:%x:%x:%x:%x:%x:%x 
%u\n", 
          *pskb, 
          info->manips[i].maniptype == IP6_NAT_MANIP_SRC 
          ? "SRC" : "DST", 
          NIP6(info->manips[i].manip.ip), 
          htons(info->manips[i].manip.u.all)); 
   if (!manip_pkt(proto, pskb, 0, 
           &info->manips[i].manip, 
           info->manips[i].maniptype)) { 
 
    READ_UNLOCK(&ip6_nat_lock); 
 
    return NF_DROP; 
   } 
  } 
 } 
 helper = info->helper; 
 READ_UNLOCK(&ip6_nat_lock); 
 if (helper) { 
  struct ip6_conntrack_expect *exp = NULL; 
  struct list_head *cur_item; 
  int ret = NF_ACCEPT; 
  int helper_called = 0; 
  DEBUGP("ip6_do_bindings: helper existing for (%p)\n", ct); 
  /* Always defragged for helpers */ 
  IP6_NF_ASSERT(!((*pskb)->nh.ipv6h->frag_off 
          & htons(IP6_MF|IP6_OFFSET))); 
  /* Have to grab read lock before sibling_list traversal */ 
  READ_LOCK(&ip6_conntrack_lock); 
  list_for_each(cur_item, &ct->sibling_list) {  
   exp = list_entry(cur_item, struct 
ip6_conntrack_expect,  
      expected_list); 
  /* if this expectation is already established, skip */ 
 if (exp->sibling){ 
    continue; 
 } 
   if (exp_for_packet(exp, *pskb, dataoff)) { 
    /* FIXME: May be true multiple times in the 
     * case of UDP!! */ 
    DEBUGP("calling nat helper (exp=%p) for 
packet\n", exp); 
    ret = helper->help(ct, exp, info, ctinfo,  
        hooknum, pskb); 
    if (ret != NF_ACCEPT) { 
     READ_UNLOCK(&ip6_conntrack_lock); 
     return ret; 
    } 
   helper_called = 1; 
   } 
  } 
  /* Helper might want to manip the packet even when there is 
no 
   * matching expectation for this packet */ 
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  if (!helper_called && helper->flags & 
IP6_NAT_HELPER_F_ALWAYS) { 
   DEBUGP("calling nat helper for packet without 
expectation\n"); 
   ret = helper->help(ct, NULL, info, ctinfo,  
        hooknum, pskb); 
   if (ret != NF_ACCEPT) { 
    READ_UNLOCK(&ip6_conntrack_lock); 
    return ret; 
   } 
  } 
  READ_UNLOCK(&ip6_conntrack_lock); 
  
  /* Adjust sequence number only once per packet  
   * (helper is called at all hooks) */ 
 
  if (proto == IPPROTO_TCP 
      && (hooknum == NF_IP6_POST_ROUTING 
   || hooknum == NF_IP6_LOCAL_IN)) { 
   DEBUGP("ip6_nat_core: adjusting sequence number\n"); 
   /* future: put this in a l4-proto specific function, 
    * and call this function here. */ 
 if (!ip6_nat_seq_adjust(pskb, ct, ctinfo)){ 
    ret = NF_DROP; 
 } 
  } 
  return ret; 
 } else { 
  return NF_ACCEPT; 
 } 
 /* not reached */ 
} 
 
int 
icmpv6_reply_translation(struct sk_buff **pskb, 
         struct ip6_conntrack *conntrack, 
         unsigned int hooknum, 
         int dir) 
{ 
 struct { 
  struct icmp6hdr icmp; 
  struct ipv6hdr ip; 
 } *inside; 
 unsigned int i; 
 struct ip6_nat_info *info = &conntrack->nat.info; 
 int hdrlen; 
 if (!skb_ip6_make_writable(pskb, IPV6_HDR_LEN + sizeof(*inside))) 
  return 0; 
 inside = (void *)(*pskb)->data + IPV6_HDR_LEN; 
 
 /* We're actually going to mangle it beyond trivial checksum 
    adjustment, so make sure the current checksum is correct. */ 
 
 if ((*pskb)->ip_summed != CHECKSUM_UNNECESSARY) { 
  hdrlen = IPV6_HDR_LEN; 

 
} 
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 /* Must be RELATED */ 
 IP6_NF_ASSERT((*pskb)->nfct 
       - (struct ip6_conntrack *)(*pskb)->nfct->master 
       == IP6_CT_RELATED 
       || (*pskb)->nfct 
       - (struct ip6_conntrack *)(*pskb)->nfct->master 
       == IP6_CT_RELATED+IP6_CT_IS_REPLY); 
 /* Redirects on non-null nats must be dropped, else they'll 
           start talking to each other without our translation, and be 
           confused... --RR */ 
 
  
 DEBUGP("icmpv6_reply_translation: translating error %p hook %u 
dir %s\n", 
        *pskb, hooknum, dir == IP6_CT_DIR_ORIGINAL ? "ORIG" : 
"REPLY"); 
 /* Note: May not be from a NAT'd host, but probably safest to 
    do translation always as if it came from the host itself 
    (even though a "host unreachable" coming from the host 
    itself is a bit weird). 
 
    More explanation: some people use NAT for anonymizing. 
    Also, CERT recommends dropping all packets from private IP 
    addresses (although ICMP errors from internal links with 
    such addresses are not too uncommon, as Alan Cox points 
    out) */ 
  
 READ_LOCK(&ip6_nat_lock); 
 for (i = 0; i < info->num_manips; i++) { 
  DEBUGP("icmpv6_reply: manip %u dir %s hook %u\n", 
         i, info->manips[i].direction == IP6_CT_DIR_ORIGINAL 
? 
         "ORIG" : "REPLY", info->manips[i].hooknum); 
 
  if (info->manips[i].direction != dir){ 
    continue; 
  } 
 
  /* Mapping the inner packet is just like a normal 
     packet, except it was never src/dst reversed, so 
     where we would normally apply a dst manip, we apply 
     a src, and vice versa. */ 
 
  if (info->manips[i].hooknum == hooknum) { 
   DEBUGP("icmpv6_reply: inner %s ->  
%x:%x:%x:%x:%x:%x:%x:%x %u\n", 
          info->manips[i].maniptype == IP6_NAT_MANIP_SRC 
          ? "DST" : "SRC", 
          NIP6(info->manips[i].manip.ip), 
          ntohs(info->manips[i].manip.u.udp.port)); 
 
   if (!manip_pkt(inside->ip.nexthdr, pskb, 
           IPV6_HDR_LEN 
           + sizeof(inside->icmp), 
           &info->manips[i].manip, 
           !info->manips[i].maniptype)){ 
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goto unlock_fail; 
   } 
   /* Outer packet needs to have IP header NATe}d like 
                    it's a reply. */ 
 
   /* Use mapping to map outer packet: 0 give no 
                           per-proto mapping */ 
   DEBUGP("icmpv6_reply: outer %s ->  
%x:%x:%x:%x:%x:%x:%x:%x \n", 
          info->manips[i].maniptype == IP6_NAT_MANIP_SRC 
          ? "SRC" : "DST", 
          NIP6(info->manips[i].manip.ip)); 
   if (!manip_pkt(0, pskb, 0, 
           &info->manips[i].manip, 
           info->manips[i].maniptype)){ 
      
 
goto unlock_fail; 
   } 
  } 
 } 
 READ_UNLOCK(&ip6_nat_lock); 
 
 hdrlen = IPV6_HDR_LEN; 
 
 inside = (void *)(*pskb)->data + IPV6_HDR_LEN; 
 
  struct in6_addr *saddrtmp, *daddrtmp; 
  struct sk_buff *skb = *pskb; 
 
 saddrtmp = &skb->nh.ipv6h->saddr; 
   daddrtmp = &skb->nh.ipv6h->daddr; 
 
 inside->icmp.icmp6_cksum = 0; 
 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * *  
 * TB MP - Here we use the csum_ipv6_magic and csum_partial functions 
to calculate the  
 * ICMPv6 header checksum.  csum_partial determines the checksum for 
just the ICMPv6 header 
 * but does not flip the bits at the end.  This is then folded into the 
pseudo-header checksum 
 * calculation done by csum_ipv6_magic, which then yields a proper 
checksum for the entire 
 * ICMPv6 header and pseudo-header combination. 
 * 
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * */  
 
 
inside->icmp.icmp6_cksum = csum_ipv6_magic(saddrtmp, daddrtmp, (*pskb)-
>len - sizeof(struct ipv6hdr), IPPROTO_ICMPV6, 
 csum_partial((char *)&inside->icmp, (*pskb)->len - sizeof(struct 
ipv6hdr), 0)); 
 
 return 1; 
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 unlock_fail: 
 READ_UNLOCK(&ip6_nat_lock); 
 return 0; 
} 
 
int __init ip6_nat_init(void) 
 
{ 
 size_t i; 
 /* Leave them the same for the moment. */ 
 ip6_nat_htable_size = ip6_conntrack_htable_size; 
 
 /* One vmalloc for both hash tables */ 
 bysource = vmalloc(sizeof(struct list_head) * 
ip6_nat_htable_size*2); 
 if (!bysource) { 
  return -ENOMEM; 
 } 
 byipsproto = bysource + ip6_nat_htable_size; 
 
 /* Sew in builtin protocols. */ 
 WRITE_LOCK(&ip6_nat_lock); 
 list_append(&ip6_protos, &ip6_nat_protocol_tcp); 
 list_append(&ip6_protos, &ip6_nat_protocol_udp); 
 list_append(&ip6_protos, &ip6_nat_protocol_icmp); 
 WRITE_UNLOCK(&ip6_nat_lock); 
 
 for (i = 0; i < ip6_nat_htable_size; i++) { 
  INIT_LIST_HEAD(&bysource[i]); 
  INIT_LIST_HEAD(&byipsproto[i]); 
 } 
 
 /* FIXME: Man, this is a hack.  <SIGH> */ 
 IP6_NF_ASSERT(ip6_conntrack_destroyed == NULL); 
 ip6_conntrack_destroyed = &ip6_nat_cleanup_conntrack; 
 
 return 0; 
} 
 
/* Clear NAT section of all conntracks, in case we're loaded again. */ 
static int clean_nat(const struct ip6_conntrack *i, void *data) 
{ 
 memset((void *)&i->nat, 0, sizeof(i->nat)); 
 return 0; 
} 
 
/* Not __exit: called from ip6_nat_standalone.c:init_or_cleanup() --RR 
*/ 
void ip6_nat_cleanup(void) 
{ 
 ip6_ct_selective_cleanup(&clean_nat, NULL); 
 ip6_conntrack_destroyed = NULL; 
 vfree(bysource); 
} 
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/INCLUDE/LINUX/NETFILTER_IPV6/IP6_NAT_CORE.H 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: include/linux/ip_nat_core.h 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
#ifndef _IP6_NAT_CORE_H 
#define _IP6_NAT_CORE_H 
#include <linux/list.h> 
#include <linux/netfilter_ipv6/ip6_conntrack.h> 
 
/* This header used to share core functionality between the standalone 
   NAT module, and the compatibility layer's use of NAT for 
masquerading. */ 
extern int ip6_nat_init(void); 
extern void ip6_nat_cleanup(void); 
 
extern unsigned int ip6_do_bindings(struct ip6_conntrack *ct, 
    enum ip6_conntrack_info conntrackinfo, 
    struct ip6_nat_info *info, 
    unsigned int hooknum, 
    struct sk_buff **pskb, 
    unsigned int dataoff); 
 
extern struct list_head ip6_protos; 
 
extern int icmpv6_reply_translation(struct sk_buff **pskb, 
      struct ip6_conntrack *conntrack, 
      unsigned int hooknum, 
      int dir); 
 
extern void ip6_replace_in_hashes(struct ip6_conntrack *conntrack, 
         struct ip6_nat_info *info); 
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extern void ip6_place_in_hashes(struct ip6_conntrack *conntrack, 
       struct ip6_nat_info *info); 
 
/* Built-in protocols. */ 
extern struct ip6_nat_protocol ip6_nat_protocol_tcp; 
extern struct ip6_nat_protocol ip6_nat_protocol_udp; 
extern struct ip6_nat_protocol ip6_nat_protocol_icmp; 
#endif /* _IP6_NAT_CORE_H */ 
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/NET/IPV6/NETFILTER/IP6_NAT_HELPER.C 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: net/ipv4/netfilter/ip_nat_helper.c 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * This file was ported, yet due to the scope of this thesis, no helper 
 * files were used. This file was not tested. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
/* ip_nat_helper.c - generic support functions for NAT helpers  
 * 
 * (C) 2000-2002 Harald Welte <laforge@netfilter.org> 
 * (C) 2003-2004 Netfilter Core Team <coreteam@netfilter.org> 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2 as 
 * published by the Free Software Foundation. 
 * 
 *  14 Jan 2002 Harald Welte <laforge@gnumonks.org>: 
 *  - add support for SACK adjustment  
 * 14 Mar 2002 Harald Welte <laforge@gnumonks.org>: 
 *  - merge SACK support into newnat API 
 * 16 Aug 2002 Brian J. Murrell <netfilter@interlinx.bc.ca>: 
 *  - make ip_nat_resize_packet more generic (TCP and UDP) 
 *  - add ip_nat_mangle_udp_packet 
 */ 
 
#include <linux/config.h> 
#include <linux/module.h> 
#include <linux/kmod.h> 
#include <linux/types.h> 
#include <linux/timer.h> 
#include <linux/skbuff.h> 
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#include <linux/netfilter_ipv6.h> 
#include <net/checksum.h> 
#include <net/icmp.h> 
#include <net/ipv6.h> 
#include <net/tcp.h> 
#include <net/udp.h> 
 
#define IPV6_HDR_LEN (sizeof(struct ipv6hdr)) 
#define ASSERT_READ_LOCK(x) MUST_BE_READ_LOCKED(&ip6_nat_lock) 
#define ASSERT_WRITE_LOCK(x) MUST_BE_WRITE_LOCKED(&ip6_nat_lock) 
 
#include <linux/netfilter_ipv6/ip6_conntrack.h> 
#include <linux/netfilter_ipv6/ip6_conntrack_helper.h> 
#include <linux/netfilter_ipv6/ip6_nat.h> 
#include <linux/netfilter_ipv6/ip6_nat_protocol.h> 
#include <linux/netfilter_ipv6/ip6_nat_core.h> 
#include <linux/netfilter_ipv6/ip6_nat_helper.h> 
#include <linux/netfilter_ipv4/listhelp.h> 
 
#if 0 
#define DEBUGP printk 
#define DUMP_OFFSET(x) printk("offset_before=%d, offset_after=%d, 
correction_pos=%u\n", x->offset_before, x->offset_after, x-
>correction_pos); 
#else 
#define DEBUGP(format, args...) 
#define DUMP_OFFSET(x) 
#endif 
 
DECLARE_LOCK(ip6_nat_seqofs_lock); 
 
/* Setup TCP sequence correction given this change at this sequence */ 
static inline void  
adjust_tcp_sequence(u32 seq, 
      int sizediff, 
      struct ip6_conntrack *ct,  
      enum ip6_conntrack_info ctinfo) 
{ 
 int dir; 
 struct ip6_nat_seq *this_way, *other_way; 
 
 DEBUGP("ip6_nat_resize_packet: old_size = %u, new_size = %u\n", 
  (*skb)->len, new_size); 
 
 dir = CTINFO2DIR(ctinfo); 
 
 this_way = &ct->nat.info.seq[dir]; 
 other_way = &ct->nat.info.seq[!dir]; 
 
 DEBUGP("ip6_nat_resize_packet: Seq_offset before: "); 
 DUMP_OFFSET(this_way); 
 
 LOCK_BH(&ip6_nat_seqofs_lock); 
 
 /* SYN adjust. If it's uninitialized, of this is after last 
  * correction, record it: we don't handle more than one 
  * adjustment in the window, but do deal with common case of a 
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  * retransmit */ 
 if (this_way->offset_before == this_way->offset_after 
     || before(this_way->correction_pos, seq)) { 
      this_way->correction_pos = seq; 
      this_way->offset_before = this_way->offset_after; 
      this_way->offset_after += sizediff; 
 } 
 UNLOCK_BH(&ip6_nat_seqofs_lock); 
 
 DEBUGP("ip6_nat_resize_packet: Seq_offset after: "); 
 DUMP_OFFSET(this_way); 
} 
/* Frobs data inside this packet, which is linear. */ 
static void mangle_contents(struct sk_buff *skb, 
       unsigned int dataoff, 
       unsigned int match_offset, 
       unsigned int match_len, 
       const char *rep_buffer, 
       unsigned int rep_len) 
{ 
 unsigned char *data; 
 
 BUG_ON(skb_is_nonlinear(skb)); 
 data = (unsigned char *)skb->nh.ipv6h + dataoff; 
 
 /* move post-replacement */ 
 memmove(data + match_offset + rep_len, 
  data + match_offset + match_len, 
  skb->tail - (data + match_offset + match_len)); 
 
 /* insert data from buffer */ 
 memcpy(data + match_offset, rep_buffer, rep_len); 
 
 /* update skb info */ 
 if (rep_len > match_len) { 
  DEBUGP("ip6_nat_mangle_packet: Extending packet by " 
   "%u from %u bytes\n", rep_len - match_len, 
         skb->len); 
  skb_put(skb, rep_len - match_len); 
 } else { 
  DEBUGP("ip6_nat_mangle_packet: Shrinking packet from " 
   "%u from %u bytes\n", match_len - rep_len, 
         skb->len); 
  __skb_trim(skb, skb->len + rep_len - match_len); 
 } 
 
 
 
/* Unusual, but possible case. */ 
static int enlarge_skb(struct sk_buff **pskb, unsigned int extra) 
{ 
 struct sk_buff *nskb; 
 
 if ((*pskb)->len + extra > 65535) 
  return 0; 
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 nskb = skb_copy_expand(*pskb, skb_headroom(*pskb), extra, 
GFP_ATOMIC); 
 if (!nskb) 
  return 0; 
 
 /* Transfer socket to new skb. */ 
 if ((*pskb)->sk) 
  skb_set_owner_w(nskb, (*pskb)->sk); 
#ifdef CONFIG_NETFILTER_DEBUG 
 nskb->nf_debug = (*pskb)->nf_debug; 
#endif 
 kfree_skb(*pskb); 
 *pskb = nskb; 
 return 1; 
} 
 
/* Generic function for mangling variable-length address changes inside 
 * NATed TCP connections (like the PORT XXX,XXX,XXX,XXX,XXX,XXX 
 * command in FTP). 
 * 
 * Takes care about all the nasty sequence number changes, 
checksumming, 
 * skb enlargement, ... 
 * 
 * */ 
 
static __inline__ u16 tcp_v6_check(struct tcphdr *th, int len, 
       struct in6_addr *saddr,  
       struct in6_addr *daddr,  
       unsigned long base) 
{ 
 return csum_ipv6_magic(saddr, daddr, len, IPPROTO_TCP, base); 
} 
 
int  
ip6_nat_mangle_tcp_packet(struct sk_buff **pskb, 
    struct ip6_conntrack *ct, 
    enum ip6_conntrack_info ctinfo, 
    unsigned int match_offset, 
    unsigned int match_len, 
    const char *rep_buffer, 
    unsigned int rep_len) 
{ 
 struct ipv6hdr *ipv6h; 
 struct tcphdr *tcph; 
 
 int datalen; 
 
 if (!skb_ip6_make_writable(pskb, (*pskb)->len)) 
  return 0; 
 
 if (rep_len > match_len 
     && rep_len - match_len > skb_tailroom(*pskb) 
     && !enlarge_skb(pskb, rep_len - match_len)) 
  return 0; 
 
 SKB_LINEAR_ASSERT(*pskb); 
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 ipv6h = (*pskb)->nh.ipv6h; 
 tcph = (void *)ipv6h + IPV6_HDR_LEN; 
 
 mangle_contents(*pskb, IPV6_HDR_LEN + tcph->doff*4, 
   match_offset, match_len, rep_buffer, rep_len); 
 
 datalen = (*pskb)->len - IPV6_HDR_LEN; 
 
 tcph->check = 0; 
 tcph->check = tcp_v6_check(tcph, datalen, &ipv6h->saddr, &ipv6h-
>daddr, 
       csum_partial((char *)tcph, datalen, 0)); 
        
 adjust_tcp_sequence(ntohl(tcph->seq), 
       (int)rep_len - (int)match_len, 
       ct, ctinfo); 
 return 1; 
} 
    
/* Generic function for mangling variable-length address changes inside 
 * NATed UDP connections (like the CONNECT DATA XXXXX MESG XXXXX INDEX 
XXXXX 
 * command in the Amanda protocol) 
 * 
 * Takes care about all the nasty sequence number changes, 
checksumming, 
 * skb enlargement, ... 
 * 
 * XXX - This function could be merged with ip_nat_mangle_tcp_packet 
which 
 *       should be fairly easy to do. 
 */ 
int  
ip6_nat_mangle_udp_packet(struct sk_buff **pskb, 
    struct ip6_conntrack *ct, 
    enum ip6_conntrack_info ctinfo, 
    unsigned int match_offset, 
    unsigned int match_len, 
    const char *rep_buffer, 
    unsigned int rep_len) 
{ 
 struct ipv6hdr *ipv6h; 
 struct udphdr *udph; 
 
 /* UDP helpers might accidentally mangle the wrong packet */ 
 ipv6h = (*pskb)->nh.ipv6h; 
 if ((*pskb)->len < IPV6_HDR_LEN + sizeof(*udph) +  
                        match_offset + match_len) 
  return 0; 
 
 if (!skb_ip6_make_writable(pskb, (*pskb)->len)) 
  return 0; 
 
 if (rep_len > match_len 
     && rep_len - match_len > skb_tailroom(*pskb) 
     && !enlarge_skb(pskb, rep_len - match_len)) 
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  return 0; 
 
 ipv6h = (*pskb)->nh.ipv6h; 
 udph = (void *)ipv6h + IPV6_HDR_LEN; 
 mangle_contents(*pskb, IPV6_HDR_LEN + sizeof(*udph), 
   match_offset, match_len, rep_buffer, rep_len); 
 
 /* update the length of the UDP packet */ 
 udph->len = htons((*pskb)->len - IPV6_HDR_LEN); 
 
 /* fix udp checksum if udp checksum was previously calculated */ 
 if (udph->check) { 
  int datalen = (*pskb)->len - IPV6_HDR_LEN; 
  udph->check = 0; 
  udph->check = csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 
                                  datalen, IPPROTO_UDP, 
                                  csum_partial((char *)udph, 
                                               datalen, 0)); 
 } 
 
 return 1; 
} 
 
/* Adjust one found SACK option including checksum correction */ 
static void 
sack_adjust(struct sk_buff *skb, 
     struct tcphdr *tcph,  
     unsigned int sackoff, 
     unsigned int sackend, 
     struct ip6_nat_seq *natseq) 
{ 
 while (sackoff < sackend) { 
  struct tcp_sack_block *sack; 
  u_int32_t new_start_seq, new_end_seq; 
 
  sack = (void *)skb->data + sackoff; 
  if (after(ntohl(sack->start_seq) - natseq->offset_before, 
     natseq->correction_pos)) 
   new_start_seq = ntohl(sack->start_seq)  
     - natseq->offset_after; 
  else 
   new_start_seq = ntohl(sack->start_seq)  
     - natseq->offset_before; 
  new_start_seq = htonl(new_start_seq); 
 
  if (after(ntohl(sack->end_seq) - natseq->offset_before, 
     natseq->correction_pos)) 
   new_end_seq = ntohl(sack->end_seq) 
          - natseq->offset_after; 
  else 
   new_end_seq = ntohl(sack->end_seq) 
          - natseq->offset_before; 
  new_end_seq = htonl(new_end_seq); 
 
  DEBUGP("sack_adjust: start_seq: %d->%d, end_seq: %d->%d\n", 
   ntohl(sack->start_seq), new_start_seq, 
   ntohl(sack->end_seq), new_end_seq); 
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  tcph->check =  
   ip6_int_nat_cheat_check(~sack->start_seq, 
new_start_seq, 
        ip6_int_nat_cheat_check(~sack-
>end_seq,  
                new_end_seq, 
             tcph->check)); 
  sack->start_seq = new_start_seq; 
  sack->end_seq = new_end_seq; 
  sackoff += sizeof(*sack); 
 } 
} 
 
/* TCP SACK sequence number adjustment */ 
static inline unsigned int 
ip6_nat_sack_adjust(struct sk_buff **pskb, 
     struct tcphdr *tcph, 
     struct ip6_conntrack *ct, 
     enum ip6_conntrack_info ctinfo) 
{ 
 unsigned int dir, optoff, optend; 
 
 optoff = IPV6_HDR_LEN + sizeof(struct tcphdr); 
 optend = IPV6_HDR_LEN + tcph->doff*4; 
 
 if (!skb_ip6_make_writable(pskb, optend)) 
  return 0; 
 
 dir = CTINFO2DIR(ctinfo); 
 
 while (optoff < optend) { 
  /* Usually: option, length. */ 
  unsigned char *op = (*pskb)->data + optoff; 
 
  switch (op[0]) { 
  case TCPOPT_EOL: 
   return 1; 
  case TCPOPT_NOP: 
   optoff++; 
   continue; 
  default: 
   /* no partial options */ 
   if (optoff + 1 == optend 
       || optoff + op[1] > optend 
       || op[1] < 2) 
    return 0; 
   if (op[0] == TCPOPT_SACK 
       && op[1] >= 2+TCPOLEN_SACK_PERBLOCK 
       && ((op[1] - 2) % TCPOLEN_SACK_PERBLOCK) == 0) 
    sack_adjust(*pskb, tcph, optoff+2, 
         optoff+op[1], 
         &ct->nat.info.seq[!dir]); 
   optoff += op[1]; 
  } 
 } 
 return 1; 
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} 
 
/* TCP sequence number adjustment.  Returns true or false.  */ 
int 
ip6_nat_seq_adjust(struct sk_buff **pskb,  
    struct ip6_conntrack *ct,  
    enum ip6_conntrack_info ctinfo) 
{ 
 struct tcphdr *tcph; 
 int dir, newseq, newack; 
 struct ip6_nat_seq *this_way, *other_way;  
 
 dir = CTINFO2DIR(ctinfo); 
 
 this_way = &ct->nat.info.seq[dir]; 
 other_way = &ct->nat.info.seq[!dir]; 
 
 /* No adjustments to make?  Very common case. */ 
 if (!this_way->offset_before && !this_way->offset_after 
     && !other_way->offset_before && !other_way->offset_after) 
  return 1; 
 
 if (!skb_ip6_make_writable(pskb, IPV6_HDR_LEN+sizeof(*tcph))) 
  return 0; 
 
 tcph = (void *)(*pskb)->data + IPV6_HDR_LEN; 
 if (after(ntohl(tcph->seq), this_way->correction_pos)) 
  newseq = ntohl(tcph->seq) + this_way->offset_after; 
 else 
  newseq = ntohl(tcph->seq) + this_way->offset_before; 
 newseq = htonl(newseq); 
 
 if (after(ntohl(tcph->ack_seq) - other_way->offset_before, 
    other_way->correction_pos)) 
  newack = ntohl(tcph->ack_seq) - other_way->offset_after; 
 else 
  newack = ntohl(tcph->ack_seq) - other_way->offset_before; 
 newack = htonl(newack); 
 
 tcph->check = ip6_int_nat_cheat_check(~tcph->seq, newseq, 
      ip6_int_nat_cheat_check(~tcph->ack_seq,  
            newack,  
           tcph->check)); 
 
 DEBUGP("Adjusting sequence number from %u->%u, ack from %u-
>%u\n", 
  ntohl(tcph->seq), ntohl(newseq), ntohl(tcph->ack_seq), 
  ntohl(newack)); 
 
 tcph->seq = newseq; 
 tcph->ack_seq = newack; 
 
 return ip6_nat_sack_adjust(pskb, tcph, ct, ctinfo); 
} 
 
static inline int 
helper_cmp(const struct ip6_nat_helper *helper, 
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    const struct ip6_conntrack_tuple *tuple) 
{ 
 return ip6_ct_tuple_mask_cmp(tuple, &helper->tuple, &helper-
>mask); 
} 
 
int ip6_nat_helper_register(struct ip6_nat_helper *me) 
{ 
 int ret = 0; 
 
 WRITE_LOCK(&ip6_nat_lock); 
 if (LIST_FIND(&ip6_helpers, helper_cmp, struct ip6_nat_helper 
*,&me->tuple)) 
  ret = -EBUSY; 
 else 
  list_prepend(&ip6_helpers, me); 
 WRITE_UNLOCK(&ip6_nat_lock); 
 
 return ret; 
} 
 
static int 
kill_helper(const struct ip6_conntrack *i, void *helper) 
{ 
 int ret; 
 
 READ_LOCK(&ip6_nat_lock); 
 ret = (i->nat.info.helper == helper); 
 READ_UNLOCK(&ip6_nat_lock); 
 
 return ret; 
} 
 
void ip6_nat_helper_unregister(struct ip6_nat_helper *me) 
{ 
 WRITE_LOCK(&ip6_nat_lock); 
 /* Autoloading conntrack helper might have failed */ 
 if (LIST_FIND(&ip6_helpers, helper_cmp, struct ip6_nat_helper 
*,&me->tuple)) { 
  LIST_DELETE(&ip6_helpers, me); 
 } 
 WRITE_UNLOCK(&ip6_nat_lock); 
 
 /* Someone could be still looking at the helper in a bh. */ 
 synchronize_net(); 
 
 /* Find anything using it, and umm, kill them.  We can't turn 
    them into normal connections: if we've adjusted SYNs, then 
    they'll ackstorm.  So we just drop it.  We used to just 
    bump module count when a connection existed, but that 
    forces admins to gen fake RSTs or bounce box, either of 
    which is just a long-winded way of making things 
    worse. --RR */ 
 ip6_ct_selective_cleanup(kill_helper, me); 
} 
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/INCLUDE/LINUX/NETFILTER_IPV6/IP6_NAT_HELPER.H 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: include/linux/ip_nat_helper.h 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * This file was ported, yet due to the scope of the thesis, no helper 
 * files were used. This file was not tested. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
#ifndef _IP6_NAT_HELPER_H 
#define _IP6_NAT_HELPER_H 
/* NAT protocol helper routines. */ 
 
#include <linux/netfilter_ipv6/ip6_conntrack.h> 
#include <linux/module.h> 
 
struct sk_buff; 
 
/* Flags */ 
/* NAT helper must be called on every packet (for TCP) */ 
#define IP6_NAT_HELPER_F_ALWAYS  0x01 
 
struct ip6_nat_helper 
{ 
 struct list_head list;  /* Internal use */ 
 
 const char *name;  /* name of the module */ 
 unsigned char flags;  /* Flags (see above) */ 
 struct module *me;  /* pointer to self */ 
  
 /* Mask of things we will help: vs. tuple from server */ 
 struct ip6_conntrack_tuple tuple; 
 struct ip6_conntrack_tuple mask; 
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 /* Helper function: returns verdict */ 
 unsigned int (*help)(struct ip6_conntrack *ct, 
        struct ip6_conntrack_expect *exp, 
        struct ip6_nat_info *info, 
        enum ip6_conntrack_info ctinfo, 
        unsigned int hooknum, 
        struct sk_buff **pskb); 
 
 /* Returns verdict and sets up NAT for this connection */ 
 unsigned int (*expect)(struct sk_buff **pskb, 
          unsigned int hooknum, 
          struct ip6_conntrack *ct, 
          struct ip6_nat_info *info); 
}; 
 
extern struct list_head ip6_helpers; 
 
extern int ip6_nat_helper_register(struct ip6_nat_helper *me); 
extern void ip6_nat_helper_unregister(struct ip6_nat_helper *me); 
 
/* These return true or false. */ 
extern int ip6_nat_mangle_tcp_packet(struct sk_buff **skb, 
    struct ip6_conntrack *ct, 
    enum ip6_conntrack_info ctinfo, 
    unsigned int match_offset, 
    unsigned int match_len, 
    const char *rep_buffer, 
    unsigned int rep_len); 
extern int ip6_nat_mangle_udp_packet(struct sk_buff **skb, 
    struct ip6_conntrack *ct, 
    enum ip6_conntrack_info ctinfo, 
    unsigned int match_offset, 
    unsigned int match_len, 
    const char *rep_buffer, 
    unsigned int rep_len); 
extern int ip6_nat_seq_adjust(struct sk_buff **pskb,  
        struct ip6_conntrack *ct,  
        enum ip6_conntrack_info ctinfo); 
#endif 
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/NET/IPV6/NETFILTER/IP6_NAT_PROTO_ICMP.C 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: net/ipv4/netfilter/ip_nat_proto_icmp.c 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
/* (C) 1999-2001 Paul `Rusty' Russell 
 * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org> 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2 as 
 * published by the Free Software Foundation. 
 */ 
 
#include <linux/types.h> 
#include <linux/init.h> 
#include <linux/netfilter.h> 
#include <linux/ipv6.h> 
#include <linux/icmpv6.h> 
#include <linux/if.h> 
#include <net/checksum.h> 
 
#include <linux/netfilter_ipv6/ip6_nat.h> 
#include <linux/netfilter_ipv6/ip6_nat_core.h> 
#include <linux/netfilter_ipv6/ip6_nat_rule.h> 
#include <linux/netfilter_ipv6/ip6_nat_protocol.h> 
 
static int 
icmpv6_in_range(const struct ip6_conntrack_tuple *tuple, 
       enum ip6_nat_manip_type maniptype, 
       const union ip6_conntrack_manip_proto *min, 
       const union ip6_conntrack_manip_proto *max) 
{ 
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 return (tuple->src.u.icmpv6.id >= min->icmpv6.id 
  && tuple->src.u.icmpv6.id <= max->icmpv6.id); 
} 
 
static int 
icmpv6_unique_tuple(struct ip6_conntrack_tuple *tuple, 
    const struct ip6_nat_range *range, 
    enum ip6_nat_manip_type maniptype, 
    const struct ip6_conntrack *conntrack) 
{ 
 static u_int16_t id; 
 unsigned int range_size 
  = (unsigned int)range->max.icmpv6.id - range->min.icmpv6.id 
+ 1; 
 unsigned int i; 
 
 /* If no range specified... */ 
 if (!(range->flags & IP6_NAT_RANGE_PROTO_SPECIFIED)) 
  range_size = 0xFFFF; 
 
 for (i = 0; i < range_size; i++, id++) { 
  tuple->src.u.icmpv6.id = range->min.icmpv6.id + (id % 
range_size); 
  if (!ip6_nat_used_tuple(tuple, conntrack)) 
   return 1; 
 } 
 return 0; 
} 
 
static int 
icmpv6_manip_pkt(struct sk_buff **pskb, 
        unsigned int hdroff, 
        const struct ip6_conntrack_manip *manip, 
        enum ip6_nat_manip_type maniptype) 
{ 
 
struct sk_buff *skb = *pskb; 
 struct icmp6hdr *hdr; 
 
 
 if (!skb_ip6_make_writable(pskb, hdroff + sizeof(hdr))){ 
 
  return 0; 
 } 
 hdr = (void *)(*pskb)->data + hdroff; 
  
 struct in6_addr *saddr, *daddr; 
 
 saddr = &skb->nh.ipv6h->saddr; 
   daddr = &skb->nh.ipv6h->daddr; 
 
 hdr->icmp6_cksum = 0; 
 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * *  
 * TB MP - Here we use the csum_ipv6_magic and csum_partial functions 
to calculate the  
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 * ICMPv6 header checksum.  csum_partial determines the checksum for 
just the ICMPv6 header 
 * but does not flip the bits at the end.  This is then folded into the 
pseudo-header checksum 
 * calculation done by csum_ipv6_magic, which then yields a proper 
checksum for the entire 
 * ICMPv6 header and pseudo-header combination. 
 * 
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * */  
 hdr->icmp6_cksum = csum_ipv6_magic(saddr, 
        daddr,  (*pskb)->len - sizeof(struct 
ipv6hdr), 
        IPPROTO_ICMPV6, 
csum_partial((char *)hdr, (*pskb)->len - sizeof(struct ipv6hdr), 0)); 
 
 
 hdr->icmp6_dataun.u_echo.identifier = manip->u.icmpv6.id; 
 
 return 1; 
} 
 
static unsigned int 
icmpv6_print(char *buffer, 
    const struct ip6_conntrack_tuple *match, 
    const struct ip6_conntrack_tuple *mask) 
{ 
 unsigned int len = 0; 
 
 if (mask->src.u.icmpv6.id) 
  len += sprintf(buffer + len, "id=%u ", 
          ntohs(match->src.u.icmpv6.id)); 
 
 if (mask->dst.u.icmpv6.type) 
  len += sprintf(buffer + len, "type=%u ", 
          ntohs(match->dst.u.icmpv6.type)); 
 
 if (mask->dst.u.icmpv6.code) 
  len += sprintf(buffer + len, "code=%u ", 
          ntohs(match->dst.u.icmpv6.code)); 
 
 return len; 
} 
 
static unsigned int 
icmpv6_print_range(char *buffer, const struct ip6_nat_range *range) 
{ 
 if (range->min.icmpv6.id != 0 || range->max.icmpv6.id != 0xFFFF) 
  return sprintf(buffer, "id %u-%u ", 
          ntohs(range->min.icmpv6.id), 
          ntohs(range->max.icmpv6.id)); 
 else return 0; 
} 
 
struct ip6_nat_protocol ip6_nat_protocol_icmp 
= { { NULL, NULL }, "ICMP", IPPROTO_ICMPV6, 
    icmpv6_manip_pkt, 
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    icmpv6_in_range, 
    icmpv6_unique_tuple, 
    icmpv6_print, 
    icmpv6_print_range, 
}; 
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/NET/IPV6/NETFILTER/IP6_NAT_PROTO_TCP.C 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: net/ipv4/netfilter/ip_nat_proto_tcp.c 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
/* (C) 1999-2001 Paul `Rusty' Russell 
 * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org> 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2 as 
 * published by the Free Software Foundation. 
 */ 
 
#include <linux/types.h> 
#include <linux/init.h> 
#include <linux/netfilter.h> 
#include <linux/ipv6.h> 
#include <linux/tcp.h> 
#include <linux/if.h> 
#include <net/checksum.h> 
#include <linux/netfilter_ipv6/ip6_nat.h> 
#include <linux/netfilter_ipv6/ip6_nat_rule.h> 
#include <linux/netfilter_ipv6/ip6_nat_protocol.h> 
#include <linux/netfilter_ipv6/ip6_nat_core.h> 
 
static int 
tcp_in_range(const struct ip6_conntrack_tuple *tuple, 
      enum ip6_nat_manip_type maniptype, 
      const union ip6_conntrack_manip_proto *min, 
      const union ip6_conntrack_manip_proto *max) 
{ 
 u_int16_t port; 
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 if (maniptype == IP6_NAT_MANIP_SRC) 
  port = tuple->src.u.tcp.port; 
 else 
  port = tuple->dst.u.tcp.port; 
 
 return ntohs(port) >= ntohs(min->tcp.port) 
  && ntohs(port) <= ntohs(max->tcp.port); 
} 
 
static int 
tcp_unique_tuple(struct ip6_conntrack_tuple *tuple, 
   const struct ip6_nat_range *range, 
   enum ip6_nat_manip_type maniptype, 
   const struct ip6_conntrack *conntrack) 
{ 
 static u_int16_t port, *portptr; 
 unsigned int range_size, min, i; 
 
 if (maniptype == IP6_NAT_MANIP_SRC) 
  portptr = &tuple->src.u.tcp.port; 
 else 
  portptr = &tuple->dst.u.tcp.port; 
 
 /* If no range specified... */ 
 if (!(range->flags & IP6_NAT_RANGE_PROTO_SPECIFIED)) { 
  /* If it's dst rewrite, can't change port */ 
  if (maniptype == IP6_NAT_MANIP_DST) 
   return 0; 
 
  /* Map privileged onto privileged. */ 
  if (ntohs(*portptr) < 1024) { 
   /* Loose convention: >> 512 is credential passing */ 
   if (ntohs(*portptr)<512) { 
    min = 1; 
    range_size = 511 - min + 1; 
   } else { 
    min = 600; 
    range_size = 1023 - min + 1; 
   } 
  } else { 
   min = 1024; 
   range_size = 65535 - 1024 + 1; 
  } 
 } else { 
  min = ntohs(range->min.tcp.port); 
  range_size = ntohs(range->max.tcp.port) - min + 1; 
 } 
 
 for (i = 0; i < range_size; i++, port++) { 
  *portptr = htons(min + port % range_size); 
  if (!ip6_nat_used_tuple(tuple, conntrack)) { 
   return 1; 
  } 
 } 
 return 0; 
} 
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static int 
tcp_manip_pkt(struct sk_buff **pskb, 
       unsigned int hdroff, 
       const struct ip6_conntrack_manip *manip, 
       enum ip6_nat_manip_type maniptype) 
{ 
 struct tcphdr *hdr; 
 struct in6_addr oldip; 
 u_int16_t *portptr, oldport; 
 int hdrsize = 8; /* TCP connection tracking guarantees this much 
*/ 
 
 /* this could be a inner header returned in icmp packet; in such 
    cases we cannot update the checksum field since it is outside 
of 
    the 8 bytes of transport layer headers we are guaranteed */ 
 if ((*pskb)->len >= hdroff + sizeof(struct tcphdr)) 
  hdrsize = sizeof(struct tcphdr); 
 
 if (!skb_ip6_make_writable(pskb, hdroff + hdrsize)) 
  return 0; 
 
 hdr = (void *)(*pskb)->data + hdroff; 
 
 if (maniptype == IP6_NAT_MANIP_SRC) { 
  /* Get rid of src ip and src pt */ 
  oldip = (*pskb)->nh.ipv6h->saddr; 
 
  portptr = &hdr->source; 
 } else { 
  /* Get rid of dst ip and dst pt */ 
  oldip = (*pskb)->nh.ipv6h->daddr; 
  portptr = &hdr->dest; 
 } 
 
 oldport = *portptr; 
 *portptr = manip->u.tcp.port; 
 
 if (hdrsize < sizeof(*hdr)) 
   return 1; 
 
 hdr->check = 0;  
 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * *  
 * TB MP - Here we use the csum_ipv6_magic and csum_partial functions 
to calculate the  
 * TCP header checksum.  csum_partial determines the checksum for just 
the TCP header 
 * but does not flip the bits at the end.  This is then folded into the 
pseudo-header checksum 
 * calculation done by csum_ipv6_magic, which then yields a proper 
checksum for the entire 
 * TCP header and pseudo-header combination. 
 * 
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 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * */  
 
 hdr->check = csum_ipv6_magic(&(*pskb)->nh.ipv6h->saddr, 
           &(*pskb)->nh.ipv6h->daddr, 
           (*pskb)->len - sizeof(struct ipv6hdr), 
           IPPROTO_TCP,  
           csum_partial((char *)hdr, (*pskb)->len - 
sizeof(struct ipv6hdr), 0)); 
  
return 1; 
} 
 
static unsigned int 
tcp_print(char *buffer, 
   const struct ip6_conntrack_tuple *match, 
   const struct ip6_conntrack_tuple *mask) 
{ 
 unsigned int len = 0; 
 
 if (mask->src.u.tcp.port) 
  len += sprintf(buffer + len, "srcpt=%u ", 
          ntohs(match->src.u.tcp.port)); 
 
 
 if (mask->dst.u.tcp.port) 
  len += sprintf(buffer + len, "dstpt=%u ", 
          ntohs(match->dst.u.tcp.port)); 
 
 return len; 
} 
 
static unsigned int 
tcp_print_range(char *buffer, const struct ip6_nat_range *range) 
{ 
 if (range->min.tcp.port != 0 || range->max.tcp.port != 0xFFFF) { 
  if (range->min.tcp.port == range->max.tcp.port) 
   return sprintf(buffer, "port %u ", 
           ntohs(range->min.tcp.port)); 
  else 
   return sprintf(buffer, "ports %u-%u ", 
           ntohs(range->min.tcp.port), 
           ntohs(range->max.tcp.port)); 
 } 
 else return 0; 
} 
 
struct ip6_nat_protocol ip6_nat_protocol_tcp 
= { { NULL, NULL }, "TCP", IPPROTO_TCP, 
    tcp_manip_pkt, 
    tcp_in_range, 
    tcp_unique_tuple, 
    tcp_print, 
    tcp_print_range 
}; 
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/NET/IPV6/NETFILTER/IP6_NAT_PROTO_UDP.C 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: net/ipv4/netfilter/ip_nat_proto_udp.c 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
/* (C) 1999-2001 Paul `Rusty' Russell 
 * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org> 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2 as 
 * published by the Free Software Foundation. 
 */ 
 
#include <linux/types.h> 
#include <linux/init.h> 
#include <linux/netfilter.h> 
#include <linux/ipv6.h> 
#include <linux/udp.h> 
#include <linux/if.h> 
#include <net/checksum.h> 
 
#include <linux/netfilter_ipv6/ip6_nat.h> 
#include <linux/netfilter_ipv6/ip6_nat_core.h> 
#include <linux/netfilter_ipv6/ip6_nat_rule.h> 
#include <linux/netfilter_ipv6/ip6_nat_protocol.h> 
 
static int 
udp_in_range(const struct ip6_conntrack_tuple *tuple, 
      enum ip6_nat_manip_type maniptype, 
      const union ip6_conntrack_manip_proto *min, 
      const union ip6_conntrack_manip_proto *max) 
{ 
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 u_int16_t port; 
 if (maniptype == IP6_NAT_MANIP_SRC) 
  port = tuple->src.u.udp.port; 
 else 
  port = tuple->dst.u.udp.port; 
 
 return ntohs(port) >= ntohs(min->udp.port) 
  && ntohs(port) <= ntohs(max->udp.port); 
} 
 
static int 
udp_unique_tuple(struct ip6_conntrack_tuple *tuple, 
   const struct ip6_nat_range *range, 
   enum ip6_nat_manip_type maniptype, 
   const struct ip6_conntrack *conntrack) 
{ 
 
 static u_int16_t port, *portptr; 
 unsigned int range_size, min, i; 
 
 if (maniptype == IP6_NAT_MANIP_SRC) 
  portptr = &tuple->src.u.udp.port; 
 else 
  portptr = &tuple->dst.u.udp.port; 
 
 /* If no range specified... */ 
 if (!(range->flags & IP6_NAT_RANGE_PROTO_SPECIFIED)) { 
  /* If it's dst rewrite, can't change port */ 
  if (maniptype == IP6_NAT_MANIP_DST) 
   return 0; 
 
  if (ntohs(*portptr) < 1024) { 
   /* Loose convention: >> 512 is credential passing */ 
   if (ntohs(*portptr)<512) { 
    min = 1; 
    range_size = 511 - min + 1; 
   } else { 
    min = 600; 
    range_size = 1023 - min + 1; 
   } 
  } else { 
   min = 1024; 
   range_size = 65535 - 1024 + 1; 
  } 
 } else { 
  min = ntohs(range->min.udp.port); 
  range_size = ntohs(range->max.udp.port) - min + 1; 
 } 
 
 for (i = 0; i < range_size; i++, port++) { 
  *portptr = htons(min + port % range_size); 
  if (!ip6_nat_used_tuple(tuple, conntrack)) 
   return 1; 
 } 
 return 0; 
} 
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static int 
udp_manip_pkt(struct sk_buff **pskb, 
       unsigned int hdroff, 
       const struct ip6_conntrack_manip *manip, 
       enum ip6_nat_manip_type maniptype) 
{ 
 
 struct udphdr *hdr; 
 struct in6_addr oldip; 
 u_int16_t *portptr; 
 
 if (!skb_ip6_make_writable(pskb, hdroff + sizeof(hdr))) 
  return 0; 
 
 hdr = (void *)(*pskb)->data + hdroff; 
 if (maniptype == IP6_NAT_MANIP_SRC) { 
  /* Get rid of src ip and src pt */ 
  oldip = (*pskb)->nh.ipv6h->saddr; 
  portptr = &hdr->source; 
 } else { 
  /* Get rid of dst ip and dst pt */ 
  oldip = (*pskb)->nh.ipv6h->daddr; 
  portptr = &hdr->dest; 
 } 
 if (hdr->check){ /* 0 is a special case meaning no checksum */ 
  
   hdr->check = 0; 
 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * *  
 * TB MP - Here we use the csum_ipv6_magic and csum_partial functions 
to calculate the  
 * UDP header checksum.  csum_partial determines the checksum for just 
the UDP header 
 * but does not flip the bits at the end.  This is then folded into the 
pseudo-header checksum 
 * calculation done by csum_ipv6_magic, which then yields a proper 
checksum for the entire 
 * UDP header and pseudo-header combination. 
 * 
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * */  
 
   hdr->check = csum_ipv6_magic(&(*pskb)->nh.ipv6h->saddr, 
           &(*pskb)->nh.ipv6h->daddr, 
           (*pskb)->len - sizeof(struct ipv6hdr), 
           IPPROTO_UDP,  
           csum_partial((char *)hdr, (*pskb)->len - 
sizeof(struct ipv6hdr), 0));  
       
 } 
 
 *portptr = manip->u.udp.port; 
 return 1; 
} 
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static unsigned int 
udp_print(char *buffer, 
   const struct ip6_conntrack_tuple *match, 
   const struct ip6_conntrack_tuple *mask) 
{ 
 
 unsigned int len = 0; 
 
 if (mask->src.u.udp.port) 
  len += sprintf(buffer + len, "srcpt=%u ", 
          ntohs(match->src.u.udp.port)); 
 
 
 if (mask->dst.u.udp.port) 
  len += sprintf(buffer + len, "dstpt=%u ", 
          ntohs(match->dst.u.udp.port)); 
 
 return len; 
} 
 
static unsigned int 
udp_print_range(char *buffer, const struct ip6_nat_range *range) 
{ 
 
 if (range->min.udp.port != 0 || range->max.udp.port != 0xFFFF) { 
  if (range->min.udp.port == range->max.udp.port) 
   return sprintf(buffer, "port %u ", 
           ntohs(range->min.udp.port)); 
  else 
   return sprintf(buffer, "ports %u-%u ", 
           ntohs(range->min.udp.port), 
           ntohs(range->max.udp.port)); 
 } 
 else return 0; 
} 
 
struct ip6_nat_protocol ip6_nat_protocol_udp 
= { { NULL, NULL }, "UDP", IPPROTO_UDP, 
    udp_manip_pkt, 
    udp_in_range, 
    udp_unique_tuple, 
    udp_print, 
    udp_print_range 
}; 
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/NET/IPV6/NETFILTER/IP6_NAT_PROTO_UNKNOWN.C 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: net/ipv4/netfilter/ip_nat_proto_unknown.c 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
/* The "unknown" protocol.  This is what is used for protocols we 
 * don't understand.  It's returned by ip_ct_find_proto(). 
 */ 
 
/* (C) 1999-2001 Paul `Rusty' Russell 
 * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org> 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2 as 
 * published by the Free Software Foundation. 
 */ 
 
#include <linux/types.h> 
#include <linux/init.h> 
#include <linux/netfilter.h> 
#include <linux/if.h> 
 
#include <linux/netfilter_ipv6/ip6_nat.h> 
#include <linux/netfilter_ipv6/ip6_nat_rule.h> 
#include <linux/netfilter_ipv6/ip6_nat_protocol.h> 
 
static int unknown_in_range(const struct ip6_conntrack_tuple *tuple, 
       enum ip6_nat_manip_type manip_type, 
       const union ip6_conntrack_manip_proto *min, 
       const union ip6_conntrack_manip_proto *max) 
{ 
 return 1; 
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} 
 
static int unknown_unique_tuple(struct ip6_conntrack_tuple *tuple, 
    const struct ip6_nat_range *range, 
    enum ip6_nat_manip_type maniptype, 
    const struct ip6_conntrack *conntrack) 
{ 
 /* Sorry: we can't help you; if it's not unique, we can't frob 
    anything. */ 
 return 0; 
} 
 
static int 
unknown_manip_pkt(struct sk_buff **pskb, 
    unsigned int hdroff, 
    const struct ip6_conntrack_manip *manip, 
    enum ip6_nat_manip_type maniptype) 
{ 
 return 1; 
} 
 
static unsigned int 
unknown_print(char *buffer, 
       const struct ip6_conntrack_tuple *match, 
       const struct ip6_conntrack_tuple *mask) 
{ 
 return 0; 
} 
 
static unsigned int 
unknown_print_range(char *buffer, const struct ip6_nat_range *range) 
{ 
 return 0; 
} 
 
struct ip6_nat_protocol ip6_unknown_nat_protocol = { 
 { NULL, NULL }, "unknown", 0, 
 unknown_manip_pkt, 
 unknown_in_range, 
 unknown_unique_tuple, 
 unknown_print, 
 unknown_print_range 
}; 
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/INCLUDE/LINUX/NETFILTER_IPV6/IP6_NAT_PROTOCOL.H 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: include/linux/ip_nat_protocol.h 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
 
/* Header for use in defining a given protocol. */ 
#ifndef _IP6_NAT_PROTOCOL_H 
#define _IP6_NAT_PROTOCOL_H 
#include <linux/init.h> 
#include <linux/list.h> 
 
struct ipv6hdr; 
struct ip6_nat_range; 
 
struct ip6_nat_protocol 
{ 
 struct list_head list; 
 
 /* Protocol name */ 
 const char *name; 
 
 /* Protocol number. */ 
 unsigned int protonum; 
 
 /* Do a packet translation according to the ip_nat_proto_manip 
  * and manip type.  Return true if succeeded. */ 
 int (*manip_pkt)(struct sk_buff **pskb, 
    unsigned int hdroff, 
    const struct ip6_conntrack_manip *manip, 
    enum ip6_nat_manip_type maniptype); 
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 /* Is the manipable part of the tuple between min and max incl? 
*/ 
 int (*in_range)(const struct ip6_conntrack_tuple *tuple, 
   enum ip6_nat_manip_type maniptype, 
   const union ip6_conntrack_manip_proto *min, 
   const union ip6_conntrack_manip_proto *max); 
 
 /* Alter the per-proto part of the tuple (depending on 
    maniptype), to give a unique tuple in the given range if 
    possible; return false if not.  Per-protocol part of tuple 
    is initialized to the incoming packet. */ 
 int (*unique_tuple)(struct ip6_conntrack_tuple *tuple, 
       const struct ip6_nat_range *range, 
       enum ip6_nat_manip_type maniptype, 
       const struct ip6_conntrack *conntrack); 
 
 unsigned int (*print)(char *buffer, 
         const struct ip6_conntrack_tuple *match, 
         const struct ip6_conntrack_tuple *mask); 
 
 unsigned int (*print_range)(char *buffer, 
        const struct ip6_nat_range *range); 
}; 
 
/* Protocol registration. */ 
extern int ip6_nat_protocol_register(struct ip6_nat_protocol *proto); 
extern void ip6_nat_protocol_unregister(struct ip6_nat_protocol 
*proto); 
 
extern int init_protocols(void) __init; 
extern void cleanup_protocols(void); 
extern struct ip6_nat_protocol *ip6_find_nat_proto(u_int16_t protonum); 
 
#endif /*_IP6_NAT_PROTO_H*/ 
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/NET/IPV6/NETFILTER/IP6_NAT_RULE.C 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: net/ipv4/netfilter/ip_nat_rule.c 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
/* (C) 1999-2001 Paul `Rusty' Russell 
 * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org> 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2 as 
 * published by the Free Software Foundation. 
 */ 
 
/* Everything about the rules for NAT. */ 
#include <linux/types.h> 
#include <linux/ipv6.h> 
#include <linux/netfilter.h> 
#include <linux/netfilter_ipv6.h> 
#include <linux/module.h> 
#include <linux/kmod.h> 
#include <linux/skbuff.h> 
#include <linux/proc_fs.h> 
#include <net/checksum.h> 
#include <linux/bitops.h> 
 
#define ASSERT_READ_LOCK(x) MUST_BE_READ_LOCKED(&ip6_nat_lock) 
#define ASSERT_WRITE_LOCK(x) MUST_BE_WRITE_LOCKED(&ip6_nat_lock) 
 
#if 0 
#define DEBUGP printk 
#else 
#define DEBUGP(format, args...) 
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#endif 
 
#include <linux/netfilter_ipv6/ip6_tables.h> 
#include <linux/netfilter_ipv6/ip6_nat.h> 
#include <linux/netfilter_ipv6/ip6_nat_core.h> 
#include <linux/netfilter_ipv6/ip6_nat_rule.h> 
#include <linux/netfilter_ipv4/listhelp.h> 
 
#define NAT_VALID_HOOKS ((1<<NF_IP6_PRE_ROUTING) | 
(1<<NF_IP6_POST_ROUTING) | (1<<NF_IP6_LOCAL_OUT)) 
  
/* Standard entry. */ 
struct ip6t_standard 
{ 
 struct ip6t_entry entry; 
 struct ip6t_standard_target target; 
}; 
 
struct ip6t_error_target 
{ 
 struct ip6t_entry_target target; 
 char errorname[IP6T_FUNCTION_MAXNAMELEN]; 
}; 
 
struct ip6t_error 
{ 
 struct ip6t_entry entry; 
 struct ip6t_error_target target; 
}; 
 
static struct 
{ 
 struct ip6t_replace repl; 
 struct ip6t_standard entries[3]; 
 struct ip6t_error term; 
} nat_initial_table __initdata 
= { { "nat", NAT_VALID_HOOKS, 4, 
      sizeof(struct ip6t_standard) * 3 + sizeof(struct ip6t_error), 
      { [NF_IP6_PRE_ROUTING] = 0, 
 [NF_IP6_POST_ROUTING] = sizeof(struct ip6t_standard), 
 [NF_IP6_LOCAL_OUT] = sizeof(struct ip6t_standard) * 2 }, 
      { [NF_IP6_PRE_ROUTING] = 0, 
 [NF_IP6_POST_ROUTING] = sizeof(struct ip6t_standard), 
 [NF_IP6_LOCAL_OUT] = sizeof(struct ip6t_standard) * 2 }, 
      0, NULL, { } }, 
    { 
     /* PRE_ROUTING */ 
     { { { { { { 0 } } }, { { { 0 } } }, { { { 0 } } }, { { { 0 } 
} }, "", "", { 0 }, { 0 }, 0, 0, 0 }, 
  0, 
  sizeof(struct ip6t_entry), 
  sizeof(struct ip6t_standard), 
  0, { 0, 0 }, { } }, 
       { { { { IP6T_ALIGN(sizeof(struct ip6t_standard_target)), "" 
} }, { } }, 
  -NF_ACCEPT - 1 } }, 
     /* POST_ROUTING */ 
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     { { { { { { 0 } } }, { { { 0 } } }, { { { 0 } } }, { { { 0 } 
} }, "", "", { 0 }, { 0 }, 0, 0, 0 }, 
  0, 
  sizeof(struct ip6t_entry), 
  sizeof(struct ip6t_standard), 
  0, { 0, 0 }, { } }, 
       { { { { IP6T_ALIGN(sizeof(struct ip6t_standard_target)), "" 
} }, { } }, 
  -NF_ACCEPT - 1 } }, 
     /* LOCAL_OUT */ 
     { { { { { { 0 } } }, { { { 0 } } }, { { { 0 } } }, { { { 0 } 
} }, "", "", { 0 }, { 0 }, 0, 0, 0 }, 
  0, 
  sizeof(struct ip6t_entry), 
  sizeof(struct ip6t_standard), 
  0, { 0, 0 }, { } }, 
       { { { { IP6T_ALIGN(sizeof(struct ip6t_standard_target)), "" 
} }, { } }, 
  -NF_ACCEPT - 1 } } 
    }, 
    /* ERROR */ 
    { { { { { { 0 } } }, { { { 0 } } }, { { { 0 } } }, { { { 0 } } }, 
"", "", { 0 }, { 0 }, 0, 0, 0 }, 
 0, 
 sizeof(struct ip6t_entry), 
 sizeof(struct ip6t_error), 
 0, { 0, 0 }, { } }, 
      { { { { IP6T_ALIGN(sizeof(struct ip6t_error_target)), 
IP6T_ERROR_TARGET } }, 
   { } }, 
 "ERROR" 
      } 
    } 
}; 
 
static struct ip6t_table nat_table = { 
 .name  = "nat", 
 .table  = &nat_initial_table.repl, 
 .valid_hooks = NAT_VALID_HOOKS, 
 .lock  = RW_LOCK_UNLOCKED, 
 .me  = THIS_MODULE, 
}; 
 
/* Source NAT */ 
static unsigned int ip6t_snat_target(struct sk_buff **pskb, 
         unsigned int hooknum, 
        const struct net_device *in, 
        const struct net_device *out, 
        const void *targinfo, 
        void *userinfo) 
{ 
 
 struct ip6_conntrack *ct; 
 enum ip6_conntrack_info ctinfo; 
 
 IP6_NF_ASSERT(hooknum == NF_IP6_POST_ROUTING); 
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 ct = ip6_conntrack_get(*pskb, &ctinfo); 
 
 /* Connection must be valid and new. */ 
 IP6_NF_ASSERT(ct && (ctinfo == IP6_CT_NEW || ctinfo == 
IP6_CT_RELATED)); 
 
 IP6_NF_ASSERT(out); 
 
return ip6_nat_setup_info(ct, targinfo, hooknum); 
} 
 
static unsigned int ip6t_dnat_target(struct sk_buff **pskb, 
        unsigned int hooknum, 
        const struct net_device *in, 
        const struct net_device *out, 
        const void *targinfo, 
        void *userinfo) 
{ 
 struct ip6_conntrack *ct; 
 enum ip6_conntrack_info ctinfo; 
 
#ifdef CONFIG_IP6_NF_NAT_LOCAL 
 IP6_NF_ASSERT(hooknum == NF_IP6_PRE_ROUTING 
       || hooknum == NF_IP6_LOCAL_OUT); 
#else 
 IP6_NF_ASSERT(hooknum == NF_IP6_PRE_ROUTING); 
#endif 
 
 ct = ip6_conntrack_get(*pskb, &ctinfo); 
 
 /* Connection must be valid and new. */ 
 IP6_NF_ASSERT(ct && (ctinfo == IP6_CT_NEW || ctinfo == 
IP6_CT_RELATED)); 
 
 return ip6_nat_setup_info(ct, targinfo, hooknum); 
} 
 
static int ip6t_snat_checkentry(const char *tablename, 
          const struct ip6t_entry *e, 
          void *targinfo, 
          unsigned int targinfosize, 
          unsigned int hook_mask) 
{ 
 struct ip6_nat_multi_range *mr = targinfo; 
 
 /* Must be a valid range */ 
 if (targinfosize < sizeof(struct ip6_nat_multi_range)) { 
  DEBUGP("SNAT: Target size %u too small\n", targinfosize); 
  return 0; 
 } 
 
 if (targinfosize != IP6T_ALIGN((sizeof(struct 
ip6_nat_multi_range) 
           + (sizeof(struct ip6_nat_range) 
       * (mr->rangesize - 1))))) { 
  DEBUGP("SNAT: Target size %u wrong for %u ranges\n", 
         targinfosize, mr->rangesize); 



164 

  return 0; 
 } 
 
 /* Only allow these for NAT. */ 
 if (strcmp(tablename, "nat") != 0) { 
  DEBUGP("SNAT: wrong table %s\n", tablename); 
  return 0; 
 } 
 
 if (hook_mask & ~(1 << NF_IP6_POST_ROUTING)) { 
  DEBUGP("SNAT: hook mask 0x%x bad\n", hook_mask); 
  return 0; 
 } 
 return 1; 
} 
 
static int ip6t_dnat_checkentry(const char *tablename, 
          const struct ip6t_entry *e, 
          void *targinfo, 
          unsigned int targinfosize, 
          unsigned int hook_mask) 
{ 
 struct ip6_nat_multi_range *mr = targinfo; 
 
 /* Must be a valid range */ 
 if (targinfosize < sizeof(struct ip6_nat_multi_range)) { 
  DEBUGP("DNAT: Target size %u too small\n", targinfosize); 
  return 0; 
 } 
 
 if (targinfosize != IP6T_ALIGN((sizeof(struct 
ip6_nat_multi_range) 
           + (sizeof(struct ip6_nat_range) 
       * (mr->rangesize - 1))))) { 
  DEBUGP("DNAT: Target size %u wrong for %u ranges\n", 
         targinfosize, mr->rangesize); 
  return 0; 
 } 
 
 /* Only allow these for NAT. */ 
 if (strcmp(tablename, "nat") != 0) { 
  DEBUGP("DNAT: wrong table %s\n", tablename); 
  return 0; 
 } 
 
 if (hook_mask & ~((1 << NF_IP6_PRE_ROUTING) | (1 << 
NF_IP6_LOCAL_OUT))) { 
  DEBUGP("DNAT: hook mask 0x%x bad\n", hook_mask); 
  return 0; 
 } 
  
#ifndef CONFIG_IP6_NF_NAT_LOCAL 
 if (hook_mask & (1 << NF_IP6_LOCAL_OUT)) { 
  DEBUGP("DNAT: CONFIG_IP6_NF_NAT_LOCAL not enabled\n"); 
  return 0; 
 } 
#endif 
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 return 1; 
} 
 
inline unsigned int 
ip6_alloc_null_binding(struct ip6_conntrack *conntrack, 
     struct ip6_nat_info *info, 
     unsigned int hooknum) 
{ 
 
 /* Force range to this IP; let proto decide mapping for 
    per-proto parts (hence not IP_NAT_RANGE_PROTO_SPECIFIED). 
    Use reply in case it's already been mangled (eg local packet). 
 */ 
 
 struct in6_addr ip 
  = (HOOK2MANIP(hooknum) == IP6_NAT_MANIP_SRC 
     ? conntrack->tuplehash[IP6_CT_DIR_REPLY].tuple.dst.ip 
     : conntrack->tuplehash[IP6_CT_DIR_REPLY].tuple.src.ip); 
 struct ip6_nat_multi_range mr 
  = { 1, { { IP6_NAT_RANGE_MAP_IPS, ip, ip, { 0 }, { 0 } } } 
}; 
 
 DEBUGP("Allocating NULL binding for %p ( 
%x:%x:%x:%x:%x:%x:%x:%x)\n", conntrack, 
        NIP6(ip)); 
 
 return ip6_nat_setup_info(conntrack, &mr, hooknum); 
} 
 
int ip6_nat_rule_find(struct sk_buff **pskb, 
       unsigned int hooknum, 
       const struct net_device *in, 
       const struct net_device *out, 
       struct ip6_conntrack *ct, 
       struct ip6_nat_info *info) 
{ 
  int ret; 
 
 ret = ip6t_do_table(pskb, hooknum, in, out, &nat_table, NULL); 
 
 if (ret == NF_ACCEPT) { 
 
   if (!(info->initialized & (1 << HOOK2MANIP(hooknum)))){ 
   
 /* NUL mapping */ 
   ret = ip6_alloc_null_binding(ct, info, hooknum); 
   } 
 } 
 
 return ret; 
} 
 
static struct ip6t_target ip6t_snat_reg = { 
 .name  = "SNAT", 
 .target  = ip6t_snat_target, 
 .checkentry = ip6t_snat_checkentry, 
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}; 
 
static struct ip6t_target ip6t_dnat_reg = { 
 .name  = "DNAT", 
 .target  = ip6t_dnat_target, 
 .checkentry = ip6t_dnat_checkentry, 
}; 
 
int __init ip6_nat_rule_init(void) 
{ 
 int ret; 
 
 ret = ip6t_register_table(&nat_table); 
 if (ret != 0) 
  return ret; 
 ret = ip6t_register_target(&ip6t_snat_reg); 
 if (ret != 0) 
  goto unregister_table; 
 
 ret = ip6t_register_target(&ip6t_dnat_reg); 
 if (ret != 0) 
  goto unregister_snat; 
 
 return ret; 
 
 unregister_snat: 
 ip6t_unregister_target(&ip6t_snat_reg); 
 unregister_table: 
 ip6t_unregister_table(&nat_table); 
 
 return ret; 
} 
 
void ip6_nat_rule_cleanup(void) 
{ 
 ip6t_unregister_target(&ip6t_dnat_reg); 
 ip6t_unregister_target(&ip6t_snat_reg); 
 ip6t_unregister_table(&nat_table); 
} 
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/INCLUDE/LINUX/NETFILTER_IPV6/IP6_NAT_RULE.H 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: include/linux/ip_nat_rule.h 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
 
#ifndef _IP6_NAT_RULE_H 
#define _IP6_NAT_RULE_H 
#include <linux/netfilter_ipv6/ip6_conntrack.h> 
#include <linux/netfilter_ipv6/ip6_tables.h> 
#include <linux/netfilter_ipv6/ip6_nat.h> 
 
#ifdef __KERNEL__ 
 
extern int ip6_nat_rule_init(void) __init; 
extern void ip6_nat_rule_cleanup(void); 
extern int ip6_nat_rule_find(struct sk_buff **pskb, 
       unsigned int hooknum, 
       const struct net_device *in, 
       const struct net_device *out, 
       struct ip6_conntrack *ct, 
       struct ip6_nat_info *info); 
 
extern unsigned int 
ip6_alloc_null_binding(struct ip6_conntrack *conntrack, 
     struct ip6_nat_info *info, 
     unsigned int hooknum); 
#endif 
#endif /* _IP6_NAT_RULE_H */ 
 
 
 



168 

/NET/IPV6/NETFILTER/IP6_NAT_STANDALONE.C 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: net/ipv4/netfilter/ip_nat_standalone.c 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
  
/* This file contains all the functions required for the standalone 
   ip_nat module. 
 
   These are not required by the compatibility layer. 
*/ 
 
/* (C) 1999-2001 Paul `Rusty' Russell 
 * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org> 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2 as 
 * published by the Free Software Foundation. 
 */ 
 
/* 
 * 23 Apr 2001: Harald Welte <laforge@gnumonks.org> 
 *  - new API and handling of conntrack/nat helpers 
 *  - now capable of multiple expectations for one master 
 * */ 
 
#include <linux/config.h> 
#include <linux/types.h> 
#include <linux/icmpv6.h> 
#include <linux/ipv6.h> 
#include <linux/netfilter.h> 
#include <linux/netfilter_ipv6.h> 
#include <linux/module.h> 
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#include <linux/skbuff.h> 
#include <linux/proc_fs.h> 
#include <net/checksum.h> 
#include <linux/spinlock.h> 
 
#define IPV6_HDR_LEN (sizeof(struct ipv6hdr)) 
#define IPV6_OPTHDR_LEN (sizeof(struct ipv6_opt_hdr)) 
 
#define ASSERT_READ_LOCK(x) MUST_BE_READ_LOCKED(&ip6_nat_lock) 
#define ASSERT_WRITE_LOCK(x) MUST_BE_WRITE_LOCKED(&ip6_nat_lock) 
 
#include <linux/netfilter_ipv6/ip6_nat.h> 
#include <linux/netfilter_ipv6/ip6_nat_rule.h> 
#include <linux/netfilter_ipv6/ip6_nat_protocol.h> 
#include <linux/netfilter_ipv6/ip6_nat_core.h> 
#include <linux/netfilter_ipv6/ip6_nat_helper.h> 
#include <linux/netfilter_ipv6/ip6_tables.h> 
#include <linux/netfilter_ipv6/ip6_conntrack_core.h> 
#include <linux/netfilter_ipv4/listhelp.h> 
 
#if 0 
#define DEBUGP printk 
#else 
#define DEBUGP(format, args...) 
#endif 
 
#define HOOKNAME(hooknum) ((hooknum) == NF_IP6_POST_ROUTING ? 
"POST_ROUTING"  \ 
      : ((hooknum) == NF_IP6_PRE_ROUTING ? "PRE_ROUTING" 
\ 
         : ((hooknum) == NF_IP6_LOCAL_OUT ? "LOCAL_OUT"  
\ 
            : ((hooknum) == NF_IP6_LOCAL_IN ? "LOCAL_IN"  
\ 
        : "*ERROR*"))) 
 
static inline int call_expect(struct ip6_conntrack *master, 
         struct sk_buff **pskb, 
         unsigned int hooknum, 
         struct ip6_conntrack *ct, 
         struct ip6_nat_info *info) 
{ 
 return master->nat.info.helper->expect(pskb, hooknum, ct, info); 
} 
 
static unsigned int 
ip6_nat_fn(unsigned int hooknum, 
   struct sk_buff **pskb, 
   const struct net_device *in, 
   const struct net_device *out, 
   int (*okfn)(struct sk_buff *), 
    unsigned int dataoff) 
{ 
 
 struct ip6_conntrack *ct; 
 enum ip6_conntrack_info ctinfo; 
 struct ip6_nat_info *info;  
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 /* maniptype == SRC for postrouting. */ 
 
 enum ip6_nat_manip_type maniptype = HOOK2MANIP(hooknum); 
 
 /* We never see fragments: conntrack defrags on pre-routing 
    and local-out, and ip_nat_out protects post-routing. */ 
 
 IP6_NF_ASSERT(!((*pskb)->nh.ipv6h->frag_off 
         & htons(IP6_MF|IP6_OFFSET))); 
 
 (*pskb)->nfcache |= NFC_UNKNOWN; 
 
 /* If we had a hardware checksum before, it's now invalid */ 
 if ((*pskb)->ip_summed == CHECKSUM_HW){ 
  (*pskb)->ip_summed = CHECKSUM_NONE; 
 } 
 ct = ip6_conntrack_get(*pskb, &ctinfo); 
 /* Can't track?  It's not due to stress, or conntrack would 
    have dropped it.  Hence it's the user's responsibilty to 
    packet filter it out, or implement conntrack/NAT for that 
    protocol. 8) --RR */ 
 
 if (!ct) { 
 
  return NF_ACCEPT; 
 } 
 
 switch (ctinfo) { 
 case IP6_CT_RELATED: 
 
 case IP6_CT_RELATED+IP6_CT_IS_REPLY: 
 
  
  if ((*pskb)->nh.ipv6h->nexthdr == IPPROTO_ICMPV6) { 
   
   if (!icmpv6_reply_translation(pskb, ct, hooknum, 
            CTINFO2DIR(ctinfo))){ 
 
    return NF_DROP; 
   } 
   else{ 
 
    return NF_ACCEPT; 
   } 
  } 
 
  /* Fall thru... (Only ICMPs can be IP_CT_IS_REPLY) */ 
 case IP6_CT_NEW: 
 
  info = &ct->nat.info; 
 
  WRITE_LOCK(&ip6_nat_lock); 
  /* Seen it before?  This can happen for loopback, retrans, 
     or local packets.. */ 
 
  if (!(info->initialized & (1 << maniptype)) 
#ifndef CONFIG_IP6_NF_NAT_LOCAL 
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      /* If this session has already been confirmed we must 
not 
       * touch it again even if there is no mapping set up. 
       * Can only happen on local->local traffic with 
       * CONFIG_IP6_NF_NAT_LOCAL disabled. 
       */ 
      && !(ct->status & IPS_CONFIRMED) 
#endif 
      ) { 
   unsigned int ret; 
 
   if (ct->master 
       && master_ct6(ct)->nat.info.helper 
       && master_ct6(ct)->nat.info.helper->expect) { 
 
    ret = call_expect(master_ct6(ct), pskb,  
        hooknum, ct, info); 
   } else { 
#ifdef CONFIG_IP6_NF_NAT_LOCAL 
    /* LOCAL_IN hook doesn't have a chain!  */ 
    if (hooknum == NF_IP6_LOCAL_IN){ 
      ret = ip6_alloc_null_binding(ct, info, 
         hooknum); 
} 
    else 
#endif 
    ret = ip6_nat_rule_find(pskb, hooknum, in, out, 
             ct, info); 
   } 
   if (ret != NF_ACCEPT) { 
 
    WRITE_UNLOCK(&ip6_nat_lock); 
    return ret; 
   } 
  } else 
   DEBUGP("Already setup manip %s for ct %p\n", 
          maniptype == IP6_NAT_MANIP_SRC ? "SRC" : 
"DST", 
          ct); 
 
  WRITE_UNLOCK(&ip6_nat_lock); 
  break; 
 
 default: 
  /* ESTABLISHED */ 
 
  IP6_NF_ASSERT(ctinfo == IP6_CT_ESTABLISHED 
        || ctinfo == 
(IP6_CT_ESTABLISHED+IP6_CT_IS_REPLY)); 
  info = &ct->nat.info; 
 } 
 IP6_NF_ASSERT(info); 
 return ip6_do_bindings(ct, ctinfo, info, hooknum, pskb, dataoff); 
} 
 
static unsigned int 
ip6_nat_out(unsigned int hooknum, 
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    struct sk_buff **pskb, 
    const struct net_device *in, 
    const struct net_device *out, 
    int (*okfn)(struct sk_buff *), 
     unsigned int dataoff) 
{ 
 /* root is playing with raw sockets. */ 
 if ((*pskb)->len < sizeof(struct ipv6hdr) 
     || IPV6_HDR_LEN < sizeof(struct ipv6hdr)){ 
  return NF_ACCEPT; 
} 
 /* We can hit fragment here; forwarded packets get 
    defragmented by connection tracking coming in, then 
    fragmented (grr) by the forward code. 
 
    In future: If we have nfct != NULL, AND we have NAT 
    initialized, AND there is no helper, then we can do full 
    NAPT on the head, and IP-address-only NAT on the rest. 
 
    I'm starting to have nightmares about fragments.  */ 
 
 
 /*if ((*pskb)->nh.ipv6h->fh & htons(IP6_MF|IP6_OFFSET)) { 
  *pskb = ip6_ct_gather_frags(*pskb); 
 
  if (!*pskb) 
   return NF_STOLEN; 
   }*/ 
 return ip6_nat_fn(hooknum, pskb, in, out, okfn, dataoff); 
} 
 
#ifdef CONFIG_IP6_NF_NAT_LOCAL 
static unsigned int 
ip6_nat_local_fn(unsigned int hooknum, 
  struct sk_buff **pskb, 
  const struct net_device *in, 
  const struct net_device *out, 
  int (*okfn)(struct sk_buff *), 
   unsigned int dataoff) 
{ 
 struct in6_addr saddr, daddr; 
 unsigned int ret; 
 
 /* root is playing with raw sockets. */ 
 if ((*pskb)->len < sizeof(struct ipv6hdr) 
     || IPV6_HDR_LEN < sizeof(struct ipv6hdr)) 
  return NF_ACCEPT; 
 
 saddr = (*pskb)->nh.ipv6h->saddr; 
 daddr = (*pskb)->nh.ipv6h->daddr; 
 
 ret = ip6_nat_fn(hooknum, pskb, in, out, okfn, dataoff); 
 /*if (ret != NF_DROP && ret != NF_STOLEN 
     && ((*pskb)->nh.ipv6h->saddr != saddr 
  || (*pskb)->nh.ipv6h->daddr != daddr)) 
  return ip6_route_me_harder(pskb) == 0 ? ret : NF_DROP;*/ 
 return ret; 
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} 
#endif 
 
/* We must be after connection tracking and before packet filtering. */ 
 
/* Before packet filtering, change destination */ 
static struct nf_hook_ops ip6_nat_in_ops = { 
 .hook  = ip6_nat_fn, 
 .owner  = THIS_MODULE, 
 .pf  = PF_INET6, 
 .hooknum = NF_IP6_PRE_ROUTING, 
 .priority = NF_IP6_PRI_NAT_DST, 
}; 
 
/* After packet filtering, change source */ 
static struct nf_hook_ops ip6_nat_out_ops = { 
 .hook  = ip6_nat_out, 
 .owner  = THIS_MODULE, 
 .pf  = PF_INET6, 
 .hooknum = NF_IP6_POST_ROUTING, 
 .priority = NF_IP6_PRI_NAT_SRC, 
}; 
 
#ifdef CONFIG_IP6_NF_NAT_LOCAL 
/* Before packet filtering, change destination */ 
static struct nf_hook_ops ip6_nat_local_out_ops = { 
 .hook  = ip6_nat_local_fn, 
 .owner  = THIS_MODULE, 
 .pf  = PF_INET6, 
 .hooknum = NF_IP6_LOCAL_OUT, 
 .priority = NF_IP6_PRI_NAT_DST, 
}; 
 
/* After packet filtering, change source for reply packets of LOCAL_OUT 
DNAT */ 
static struct nf_hook_ops ip6_nat_local_in_ops = { 
 .hook  = ip6_nat_fn, 
 .owner  = THIS_MODULE, 
 .pf  = PF_INET6, 
 .hooknum = NF_IP6_LOCAL_IN, 
 .priority = NF_IP6_PRI_NAT_SRC, 
}; 
#endif 
 
/* Protocol registration. */ 
int ip6_nat_protocol_register(struct ip6_nat_protocol *proto) 
{ 
 int ret = 0; 
 struct list_head *i; 
 
 WRITE_LOCK(&ip6_nat_lock); 
 list_for_each(i, &ip6_protos) { 
  if (((struct ip6_nat_protocol *)i)->protonum 
      == proto->protonum) { 
   ret = -EBUSY; 
   goto out; 
  } 
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 } 
 
 list_prepend(&ip6_protos, proto); 
 out: 
 WRITE_UNLOCK(&ip6_nat_lock); 
 return ret; 
} 
 
/* Noone stores the protocol anywhere; simply delete it. */ 
void ip6_nat_protocol_unregister(struct ip6_nat_protocol *proto) 
{ 
 WRITE_LOCK(&ip6_nat_lock); 
 LIST_DELETE(&ip6_protos, proto); 
 WRITE_UNLOCK(&ip6_nat_lock); 
 
 /* Someone could be still looking at the proto in a bh. */ 
 synchronize_net(); 
} 
 
static int init_or_cleanup(int init) 
{ 
 int ret = 0; 
 
 need_ip6_conntrack(); 
 
 if (!init) goto cleanup; 
 
 ret = ip6_nat_rule_init(); 
 if (ret < 0) { 
  printk("ip6_nat_init: can't setup rules.\n"); 
  goto cleanup_nothing; 
 } 
 ret = ip6_nat_init(); 
 if (ret < 0) { 
  printk("ip6_nat_init: can't setup rules.\n"); 
  goto cleanup_rule_init; 
 } 
 ret = nf_register_hook(&ip6_nat_in_ops); 
 if (ret < 0) { 
  printk("ip6_nat_init: can't register in hook.\n"); 
  goto cleanup_nat; 
 } 
 ret = nf_register_hook(&ip6_nat_out_ops); 
 if (ret < 0) { 
  printk("ip6_nat_init: can't register out hook.\n"); 
  goto cleanup_inops; 
 } 
#ifdef CONFIG_IP6_NF_NAT_LOCAL 
 ret = nf_register_hook(&ip6_nat_local_out_ops); 
 if (ret < 0) { 
  printk("ip6_nat_init: can't register local out hook.\n"); 
  goto cleanup_outops; 
 } 
 ret = nf_register_hook(&ip6_nat_local_in_ops); 
 if (ret < 0) { 
  printk("ip6_nat_init: can't register local in hook.\n"); 
  goto cleanup_localoutops; 
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 } 
#endif 
 return ret; 
 
 cleanup: 
#ifdef CONFIG_IP6_NF_NAT_LOCAL 
 nf_unregister_hook(&ip6_nat_local_in_ops); 
 cleanup_localoutops: 
 nf_unregister_hook(&ip6_nat_local_out_ops); 
 cleanup_outops: 
#endif 
 nf_unregister_hook(&ip6_nat_out_ops); 
 cleanup_inops: 
 nf_unregister_hook(&ip6_nat_in_ops); 
 cleanup_nat: 
 ip6_nat_cleanup(); 
 cleanup_rule_init: 
 ip6_nat_rule_cleanup(); 
 cleanup_nothing: 
 MUST_BE_READ_WRITE_UNLOCKED(&ip6_nat_lock); 
 return ret; 
} 
 
static int __init init(void) 
{ 
 return init_or_cleanup(1); 
} 
 
static void __exit fini(void) 
{ 
 init_or_cleanup(0); 
} 
 
module_init(init); 
module_exit(fini); 
 
EXPORT_SYMBOL(ip6_nat_setup_info); 
EXPORT_SYMBOL(ip6_nat_protocol_register); 
EXPORT_SYMBOL(ip6_nat_protocol_unregister); 
EXPORT_SYMBOL(ip6_nat_helper_register); 
EXPORT_SYMBOL(ip6_nat_helper_unregister); 
EXPORT_SYMBOL(ip6_nat_cheat_check); 
/* 
EXPORT_SYMBOL(ip_nat_cheat_check); 
*/ 
EXPORT_SYMBOL(ip6_nat_mangle_tcp_packet); 
EXPORT_SYMBOL(ip6_nat_mangle_udp_packet); 
EXPORT_SYMBOL(ip6_nat_used_tuple); 
MODULE_LICENSE("GPL"); 
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/INCLUDE/LINUX/NETFILTER_IPV6/IP6T_IPRANGE.H 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: include/linux/ ip6t_iprange.h 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
 
#ifndef _IP6T_IPRANGE_H 
#define _IP6T_IPRANGE_H 
 
#define IPRANGE_SRC  0x01 /* Match source IP address */ 
#define IPRANGE_DST  0x02 /* Match destination IP address */ 
#define IPRANGE_SRC_INV  0x10 /* Negate the condition */ 
#define IPRANGE_DST_INV  0x20 /* Negate the condition */ 
 
struct ip6t_iprange { 
 /* Inclusive: network order. */ 
 struct in6_addr min_ip, max_ip; 
}; 
 
struct ip6t_iprange_info 
{ 
 struct ip6t_iprange src; 
 struct ip6t_iprange dst; 
 
 /* Flags from above */ 
 u_int8_t flags; 
}; 
 
#endif /* _IP6T_IPRANGE_H */ 
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/NET/IPV6/NETFILTER/IP6T_NETMAP.C 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: net/ipv4/netfilter/ipt_NETMAP.c 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
/* NETMAP - static NAT mapping of IP network addresses (1:1). 
 * The mapping can be applied to source (POSTROUTING), 
 * destination (PREROUTING), or both (with separate rules). 
 */ 
 
/* (C) 2000-2001 Svenning Soerensen <svenning@post5.tele.dk> 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2 as 
 * published by the Free Software Foundation. 
 */ 
 
#include <linux/config.h> 
#include <linux/ipv6.h> 
#include <linux/module.h> 
#include <linux/netdevice.h> 
#include <linux/netfilter.h> 
#include <linux/netfilter_ipv6.h> 
#include <linux/netfilter_ipv6/ip6_nat_rule.h> 
 
#define MODULENAME "NETMAP" 
MODULE_LICENSE("GPL"); 
MODULE_AUTHOR("Svenning Soerensen <svenning@post5.tele.dk>"); 
MODULE_DESCRIPTION("iptables 1:1 NAT mapping of IP networks target"); 
 
#if 0 
#define DEBUGP printk 
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#else 
#define DEBUGP(format, args...) 
#endif 
 
static int 
check(const char *tablename, 
      const struct ip6t_entry *e, 
      void *targinfo, 
      unsigned int targinfosize, 
      unsigned int hook_mask) 
{ 
 const struct ip6_nat_multi_range *mr = targinfo; 
 
 if (strcmp(tablename, "nat") != 0) { 
  DEBUGP(MODULENAME":check: bad table `%s'.\n", tablename); 
  return 0; 
 } 
 if (targinfosize != IP6T_ALIGN(sizeof(*mr))) { 
  DEBUGP(MODULENAME":check: size %u.\n", targinfosize); 
  return 0; 
 } 
 if (hook_mask & ~((1 << NF_IP6_PRE_ROUTING) | (1 << 
NF_IP6_POST_ROUTING))) { 
  DEBUGP(MODULENAME":check: bad hooks %x.\n", hook_mask); 
  return 0; 
 } 
 if (!(mr->range[0].flags & IP6_NAT_RANGE_MAP_IPS)) { 
  DEBUGP(MODULENAME":check: bad MAP_IPS.\n"); 
  return 0; 
 } 
 if (mr->rangesize != 1) { 
  DEBUGP(MODULENAME":check: bad rangesize %u.\n", mr-
>rangesize); 
  return 0; 
 } 
 return 1; 
} 
 
static unsigned int 
target(struct sk_buff **pskb, 
       const struct net_device *in, 
       const struct net_device *out, 
       unsigned int hooknum, 
       const void *targinfo, 
       void *userinfo) 
{ 
 struct ip6_conntrack *ct; 
 enum ip6_conntrack_info ctinfo; 
 struct in6_addr new_ip, netmask; 
 const struct ip6_nat_multi_range *mr = targinfo; 
 struct ip6_nat_multi_range newrange; 
 
 IP6_NF_ASSERT(hooknum == NF_IP6_PRE_ROUTING 
       || hooknum == NF_IP6_POST_ROUTING); 
 ct = ip6_conntrack_get(*pskb, &ctinfo); 
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 netmask.s6_addr[0] = ~(mr->range[0].min_ip.s6_addr[0] ^ mr-
>range[0].max_ip.s6_addr[0]); 
 netmask.s6_addr[1] = ~(mr->range[0].min_ip.s6_addr[1] ^ mr-
>range[0].max_ip.s6_addr[1]); 
 netmask.s6_addr[2] = ~(mr->range[0].min_ip.s6_addr[2] ^ mr-
>range[0].max_ip.s6_addr[2]); 
 netmask.s6_addr[3] = ~(mr->range[0].min_ip.s6_addr[3] ^ mr-
>range[0].max_ip.s6_addr[3]); 
 
 if (hooknum == NF_IP6_PRE_ROUTING){ 
  new_ip.s6_addr[0] = (*pskb)->nh.ipv6h->daddr.s6_addr[0] & 
~netmask.s6_addr[0]; 
  new_ip.s6_addr[1] = (*pskb)->nh.ipv6h->daddr.s6_addr[1] & 
~netmask.s6_addr[1]; 
  new_ip.s6_addr[2] = (*pskb)->nh.ipv6h->daddr.s6_addr[2] & 
~netmask.s6_addr[2]; 
  new_ip.s6_addr[3] = (*pskb)->nh.ipv6h->daddr.s6_addr[3] & 
~netmask.s6_addr[3]; 
 } 
 else{ 
  new_ip.s6_addr[0] = (*pskb)->nh.ipv6h->saddr.s6_addr[0] & 
~netmask.s6_addr[0]; 
  new_ip.s6_addr[1] = (*pskb)->nh.ipv6h->saddr.s6_addr[1] & 
~netmask.s6_addr[1]; 
  new_ip.s6_addr[2] = (*pskb)->nh.ipv6h->saddr.s6_addr[2] & 
~netmask.s6_addr[2]; 
  new_ip.s6_addr[3] = (*pskb)->nh.ipv6h->saddr.s6_addr[3] & 
~netmask.s6_addr[3]; 
 } 
  
 new_ip.s6_addr[0] |= mr->range[0].min_ip.s6_addr[0] & 
netmask.s6_addr[0]; 
 new_ip.s6_addr[1] |= mr->range[0].min_ip.s6_addr[1] & 
netmask.s6_addr[1]; 
 new_ip.s6_addr[2] |= mr->range[0].min_ip.s6_addr[2] & 
netmask.s6_addr[2]; 
 new_ip.s6_addr[3] |= mr->range[0].min_ip.s6_addr[3] & 
netmask.s6_addr[3]; 
 
 newrange = ((struct ip6_nat_multi_range) 
 { 1, { { mr->range[0].flags | IP6_NAT_RANGE_MAP_IPS, 
   new_ip, new_ip, 
   mr->range[0].min, mr->range[0].max } } }); 
 
 /* Hand modified range to generic setup. */ 
 return ip6_nat_setup_info(ct, &newrange, hooknum); 
} 
 
static struct ip6t_target target_module = {  
 .name   = MODULENAME, 
 .target  = target,  
 .checkentry  = check, 
     .me   = THIS_MODULE  
}; 
 
static int __init init(void) 
{ 
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 return ip6t_register_target(&target_module); 
} 
 
static void __exit fini(void) 
{ 
 ip6t_unregister_target(&target_module); 
} 
 
module_init(init); 
module_exit(fini); 
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/NET/IPV6/NETFILTER/IP6T_SAME.C 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: net/ipv4/netfilter/ipt_SAME.c 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
/* Same.  Just like SNAT, only try to make the connections 
 *    between client A and server B always have the same source ip. 
 * 
 * (C) 2000 Paul `Rusty' Russell 
 * (C) 2001 Martin Josefsson 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2 as 
 * published by the Free Software Foundation. 
 * 
 * 010320 Martin Josefsson <gandalf@wlug.westbo.se> 
 *  * copied ipt_BALANCE.c to ipt_SAME.c and changed a few things. 
 * 010728 Martin Josefsson <gandalf@wlug.westbo.se> 
 *  * added --nodst to not include destination-ip in new source 
 *    calculations. 
 * * added some more sanity-checks. 
 * 010729 Martin Josefsson <gandalf@wlug.westbo.se> 
 *  * fixed a buggy if-statement in same_check(), should have 
 *    used ntohl() but didn't. 
 *  * added support for multiple ranges. IPT_SAME_MAX_RANGE is 
 *    defined in linux/include/linux/netfilter_ipv4/ipt_SAME.h 
 *    and is currently set to 10. 
 *  * added support for 1-address range, nice to have now that 
 *    we have multiple ranges. 
 */ 
#include <linux/types.h> 
#include <linux/ipv6.h> 



183 

#include <linux/timer.h> 
#include <linux/module.h> 
#include <linux/netfilter.h> 
#include <linux/netdevice.h> 
#include <linux/if.h> 
#include <linux/inetdevice.h> 
#include <net/protocol.h> 
#include <net/checksum.h> 
#include <linux/netfilter_ipv6.h> 
#include <linux/netfilter_ipv6/ip6_nat_rule.h> 
#include <linux/netfilter_ipv6/ip6t_SAME.h> 
 
MODULE_LICENSE("GPL"); 
MODULE_AUTHOR("Martin Josefsson <gandalf@wlug.westbo.se>"); 
MODULE_DESCRIPTION("iptables special SNAT module for consistent 
sourceip"); 
 
#if 1 
#define DEBUGP printk 
#else 
#define DEBUGP(format, args...) 
#endif 
 
static int 
same_check(const char *tablename, 
       const struct ip6t_entry *e, 
       void *targinfo, 
       unsigned int targinfosize, 
       unsigned int hook_mask) 
{ 
 unsigned int count, countess0, countess1, countess2, countess3, 
rangeip, index = 0; 
 struct ip6t_same_info *mr = targinfo; 
 
 mr->ipnum = 0; 
 
 if (strcmp(tablename, "nat") != 0) { 
  DEBUGP("same_check: bad table `%s'.\n", tablename); 
  return 0; 
 } 
 if (targinfosize != IP6T_ALIGN(sizeof(*mr))) { 
  DEBUGP("same_check: size %u.\n", targinfosize); 
  return 0; 
 } 
 if (hook_mask & ~(1 << NF_IP6_PRE_ROUTING | 1 << 
NF_IP6_POST_ROUTING)) { 
  DEBUGP("same_check: bad hooks %x.\n", hook_mask); 
  return 0; 
 } 
 if (mr->rangesize < 1) { 
  DEBUGP("same_check: need at least one dest range.\n"); 
  return 0; 
 } 
 if (mr->rangesize > IP6T_SAME_MAX_RANGE) { 
  DEBUGP("same_check: too many ranges specified, maximum " 
    "is %u ranges\n", 
    IP6T_SAME_MAX_RANGE); 
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  return 0; 
 } 
 for (count = 0; count < mr->rangesize; count++) { 
  if( (ntohl(mr->range[count].min_ip.s6_addr32[0]) > 
ntohl(mr->range[count].max_ip.s6_addr32[0])) 
 
      || ((ntohl(mr->range[count].min_ip.s6_addr32[0]) == 
ntohl(mr->range[count].max_ip.s6_addr32[0])) 
   && (ntohl(mr->range[count].min_ip.s6_addr32[1]) > 
ntohl(mr->range[count].max_ip.s6_addr32[1]))) 
 
      || ((ntohl(mr->range[count].min_ip.s6_addr32[0]) == 
ntohl(mr->range[count].max_ip.s6_addr32[0])) 
   && (ntohl(mr->range[count].min_ip.s6_addr32[1]) == 
ntohl(mr->range[count].max_ip.s6_addr32[1])) 
   && (ntohl(mr->range[count].min_ip.s6_addr32[2]) > 
ntohl(mr->range[count].max_ip.s6_addr32[2]))) 
       
      || ((ntohl(mr->range[count].min_ip.s6_addr32[0]) == 
ntohl(mr->range[count].max_ip.s6_addr32[0])) 
   && (ntohl(mr->range[count].min_ip.s6_addr32[1]) == 
ntohl(mr->range[count].max_ip.s6_addr32[1])) 
   && (ntohl(mr->range[count].min_ip.s6_addr32[2]) == 
ntohl(mr->range[count].max_ip.s6_addr32[2])) 
   && (ntohl(mr->range[count].min_ip.s6_addr32[3]) > 
ntohl(mr->range[count].max_ip.s6_addr32[3])))) 
    { 
      DEBUGP("same_check: min_ip is larger than max_ip in " 
      "range ` %x:%x:%x:%x:%x:%x:%x:%x- 
%x:%x:%x:%x:%x:%x:%x:%x'.\n", 
      NIP6(mr->range[count].min_ip), 
      NIP6(mr->range[count].max_ip)); 
      return 0; 
    } 
  if (!(mr->range[count].flags & IP6_NAT_RANGE_MAP_IPS)) { 
    DEBUGP("same_check: bad MAP_IPS.\n"); 
    return 0; 
  } 
  rangeip = (((ntohl(mr->range[count].max_ip.s6_addr32[0]) - 
ntohl(mr->range[count].min_ip.s6_addr32[0])) + 1) *  
      ((ntohl(mr->range[count].max_ip.s6_addr32[1]) - 
ntohl(mr->range[count].min_ip.s6_addr32[1])) + 1) * 
      ((ntohl(mr->range[count].max_ip.s6_addr32[2]) - 
ntohl(mr->range[count].min_ip.s6_addr32[2])) + 1) * 
      ((ntohl(mr->range[count].max_ip.s6_addr32[3]) - 
ntohl(mr->range[count].min_ip.s6_addr32[3])) + 1)); 
  mr->ipnum += rangeip; 
  DEBUGP("same_check: range %u, ipnum = %u\n", count, 
rangeip); 
 } 
  
 DEBUGP("same_check: total ipaddresses = %u\n", mr->ipnum); 
 mr->iparray = kmalloc((sizeof(struct in6_addr) * mr->ipnum), 
GFP_KERNEL); 
 if (!mr->iparray) { 
   DEBUGP("same_check: Couldn't allocate %u bytes " 
   "for %u ipaddresses!\n",  
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   (sizeof(struct in6_addr) * mr->ipnum), mr->ipnum); 
   return 0; 
 } 
 DEBUGP("same_check: Allocated %u bytes for %u ipaddresses.\n", 
        (sizeof(struct in6_addr) * mr->ipnum), mr->ipnum); 
  
 for (count = 0; count < mr->rangesize; count++) { 
    
   for (countess0 = ntohl(mr->range[count].min_ip.s6_addr32[0]); 
        countess0 <= ntohl(mr->range[count].max_ip.s6_addr32[0]); 
        countess0++) { 
      
     countess1 = 0; 
     for (countess1 = ntohl(mr->range[count].min_ip.s6_addr32[1]); 
   countess1 <= ntohl(mr->range[count].max_ip.s6_addr32[1]); 
   countess1++) { 
 
       countess2 = 0; 
       for (countess2 = ntohl(mr-
>range[count].min_ip.s6_addr32[2]); 
     countess2 <= ntohl(mr-
>range[count].max_ip.s6_addr32[2]); 
     countess2++) { 
  
  countess3 = 0; 
  for (countess3 = ntohl(mr-
>range[count].min_ip.s6_addr32[3]); 
       countess3 <= ntohl(mr-
>range[count].max_ip.s6_addr32[3]); 
       countess3++) { 
      
   mr->iparray[index].s6_addr32[0] = countess0; 
   mr->iparray[index].s6_addr32[1] = countess1; 
   mr->iparray[index].s6_addr32[2] = countess2; 
   mr->iparray[index].s6_addr32[3] = countess3; 
 
   DEBUGP("same_check: Added ipaddress ` 
%x:%x:%x:%x:%x:%x:%x:%x' " 
    "in index %u.\n", 
    NIP6(mr->iparray[index]), index); 
   index++; 
  } 
       } 
     } 
   } 
 } 
        
 return 1; 
} 
 
static void  
same_destroy(void *targinfo, 
  unsigned int targinfosize) 
{ 
 struct ip6t_same_info *mr = targinfo; 
 
 kfree(mr->iparray); 
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 DEBUGP("same_destroy: Deallocated %u bytes for %u 
ip6addresses.\n", 
   (sizeof(struct in6_addr) * mr->ipnum), mr->ipnum); 
} 
 
static unsigned int 
same_target(struct sk_buff **pskb, 
  const struct net_device *in, 
  const struct net_device *out, 
  unsigned int hooknum, 
  const void *targinfo, 
  void *userinfo) 
{ 
 struct ip6_conntrack *ct; 
 enum ip6_conntrack_info ctinfo; 
 struct in6_addr tmpip, new_ip; 
 u_int32_t aindex; 
 const struct ip6t_same_info *mr = targinfo; 
 struct ip6_nat_multi_range newrange; 
 const struct ip6_conntrack_tuple *t; 
 
 IP6_NF_ASSERT(hooknum == NF_IP6_PRE_ROUTING || 
   hooknum == NF_IP6_POST_ROUTING); 
 ct = ip6_conntrack_get(*pskb, &ctinfo); 
 
 t = &ct->tuplehash[IP6_CT_DIR_ORIGINAL].tuple; 
 
 /* Base new source on real src ip and optionally dst ip, 
    giving some hope for consistency across reboots. 
    Here we calculate the index in mr->iparray which 
    holds the ipaddress we should use */ 
  
 tmpip.s6_addr32[0] = ntohl(t->src.ip.s6_addr32[0]); 
 tmpip.s6_addr32[1] = ntohl(t->src.ip.s6_addr32[1]); 
 tmpip.s6_addr32[2] = ntohl(t->src.ip.s6_addr32[2]); 
 tmpip.s6_addr32[3] = ntohl(t->src.ip.s6_addr32[3]); 
 
 if (!(mr->info & IP6T_SAME_NODST)){ 
   tmpip.s6_addr32[0] += ntohl(t->dst.ip.s6_addr32[0]); 
   tmpip.s6_addr32[1] += ntohl(t->dst.ip.s6_addr32[1]); 
   tmpip.s6_addr32[2] += ntohl(t->dst.ip.s6_addr32[2]); 
   tmpip.s6_addr32[3] += ntohl(t->dst.ip.s6_addr32[3]); 
 } 
 
 aindex = ((tmpip.s6_addr32[0] + tmpip.s6_addr32[1] + 
tmpip.s6_addr32[2] + tmpip.s6_addr32[3]) % mr->ipnum); 
   
 new_ip.s6_addr32[0] = ntohl(mr->iparray[aindex].s6_addr32[0]); 
 new_ip.s6_addr32[1] = htonl(mr->iparray[aindex].s6_addr32[1]);  
 new_ip.s6_addr32[2] = htonl(mr->iparray[aindex].s6_addr32[2]); 
 new_ip.s6_addr32[3] = htonl(mr->iparray[aindex].s6_addr32[3]); 
 
 DEBUGP("ip6t_SAME: src= %x:%x:%x:%x:%x:%x:%x:%x dst= 
%x:%x:%x:%x:%x:%x:%x:%x, " 
   "new src= %x:%x:%x:%x:%x:%x:%x:%x\n", 
   NIP6(t->src.ip), NIP6(t->dst.ip), 
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   NIP6(new_ip)); 
 
 /* Transfer from original range. */ 
 newrange = ((struct ip6_nat_multi_range) 
  { 1, { { mr->range[0].flags | IP6_NAT_RANGE_MAP_IPS, 
    new_ip, new_ip, 
    mr->range[0].min, mr->range[0].max } } }); 
 
 /* Hand modified range to generic setup. */ 
 return ip6_nat_setup_info(ct, &newrange, hooknum); 
} 
 
static struct ip6t_target same_reg = {  
 .name  = "SAME", 
 .target  = same_target, 
 .checkentry = same_check, 
 .destroy = same_destroy, 
 .me  = THIS_MODULE, 
}; 
 
static int __init init(void) 
{ 
 return ip6t_register_target(&same_reg); 
} 
 
static void __exit fini(void) 
{ 
 ip6t_unregister_target(&same_reg); 
} 
 
module_init(init); 
module_exit(fini); 
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/INCLUDE/LINUX/NETFILTER_IPV6/IP6T_SAME.H 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: include/linux/ipt_SAME.h 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
 
#ifndef _IP6T_SAME_H 
#define _IP6T_SAME_H 
 
#define IP6T_SAME_MAX_RANGE 10 
 
#define IP6T_SAME_NODST  0x01 
 
struct ip6t_same_info 
{ 
 unsigned char info; 
 u_int32_t rangesize; 
 u_int32_t ipnum; 
 struct in6_addr *iparray; 
 
 /* hangs off end. */ 
 struct ip6_nat_range range[IP6T_SAME_MAX_RANGE]; 
}; 
 
#endif /*_IP6T_SAME_H*/ 
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/NET/CORE/NETFILTER.C 

 
/* netfilter.c: look after the filters for various protocols.  
 * Heavily influenced by the old firewall.c by David Bonn and Alan Cox. 
 * 
 * Thanks to Rob `CmdrTaco' Malda for not influencing this code in any 
 * way. 
 * 
 * Rusty Russell (C)2000 -- This code is GPL. 
 * 
 * February 2000: Modified by James Morris to have 1 queue per 
protocol. 
 * 15-Mar-2000:   Added NF_REPEAT --RR. 
 * 24-May-2004:   Added ip6_skb_make_writable() - TB MP 
 */ 
 
 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * *  
 * TB MP - This funciton is the same as skb_ip_make_writable except 
variables and function 
 * names are updated to reflect changes made in the IPv6 suite.  This 
function is necessary  
 * for NAT, or any other function, to write to the skb. 
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * */ 
 
int skb_ip6_make_writable(struct sk_buff **pskb, unsigned int 
writable_len) 
{ 
 struct sk_buff *nskb; 
 unsigned int iplen; 
 
 if (writable_len > (*pskb)->len) 
  return 0; 
 
 /* Not exclusive use of packet?  Must copy. */ 
 if (skb_shared(*pskb) || skb_cloned(*pskb)) 
  goto copy_skb; 
 
 /* Alexey says IP hdr is always modifiable and linear, so ok. */ 
 if (writable_len <= IPV6_HDR_LEN) 
  return 1; 
 
 iplen = writable_len - IPV6_HDR_LEN; 
 
 /* DaveM says protocol headers are also modifiable. */ 
 switch ((*pskb)->nh.ipv6h->nexthdr) { 
 case IPPROTO_TCP: { 
  struct tcphdr hdr; 
  if (skb_copy_bits(*pskb, IPV6_HDR_LEN, 
      &hdr, sizeof(hdr)) != 0) 
    goto copy_skb; 
  if (writable_len <= (IPV6_HDR_LEN + hdr.doff*4)) 
    goto pull_skb; 
  goto copy_skb; 
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 } 
 case IPPROTO_UDP: 
  if (writable_len <= IPV6_HDR_LEN + sizeof(struct udphdr)) 
   goto pull_skb; 
  goto copy_skb; 
 case IPPROTO_ICMPV6: 
  if (writable_len 
      <= IPV6_HDR_LEN + sizeof(struct icmp6hdr)) 
   goto pull_skb; 
  goto copy_skb; 
 /* Insert other cases here as desired */ 
 } 
 
copy_skb: 
 nskb = skb_copy(*pskb, GFP_ATOMIC); 
 if (!nskb) 
  return 0; 
 BUG_ON(skb_is_nonlinear(nskb)); 
 
 /* Rest of kernel will get very unhappy if we pass it a 
    suddenly-orphaned skbuff */ 
 if ((*pskb)->sk) 
  skb_set_owner_w(nskb, (*pskb)->sk); 
 kfree_skb(*pskb); 
 *pskb = nskb; 
 return 1; 
 
pull_skb: 
 return pskb_may_pull(*pskb, writable_len); 
} 
EXPORT_SYMBOL(skb_ip6_make_writable); 
 
/* TB MP - END NAT CODE*/ 
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/HOME/IPTABLES-1.2.9RC1/EXTENSIONS/LIBIP6T_SNAT.C 

/* 
 * IPv6 Network Address Translation 
 * Linux INET6 Implementation 
 * 
 * Created based on: /home/iptables-1.2.9rc1/extensions/libipt_SNAT.c 
 * 
 * Created by: 
 *      Trevor J. Baumgartner 
 *      Matthew D. W. Phillips 
 * 
 *  
 * 
 * Except where noted, porting involved rote updates of function names 
 * and datatypes to reflect those being used in IPv6 versus those being  
 * used in IPv4.  For example, instead of using an unsigned 32 bit  
 * integer for the IPv4 address, an in6_addr struct is used for IPv6, 
 * or instead of using the pointer 'icmphdr' to access the icmp header,  
 * IPv6 uses 'icmp6hdr'.  Substantial changes are explained in detail. 
 * 
 * Certain areas necessitated breaking the IPv6 address down into array 
 * format in order to perform binary operations on the address. 
 *  
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version. 
 */   
 
/* Shared library add-on to iptables to add source-NAT support. */ 
#include <stdio.h> 
#include <netdb.h> 
#include <string.h> 
#include <stdlib.h> 
#include <dlfcn.h> 
#include <ctype.h> 
#include <stdarg.h> 
#include <limits.h> 
#include <arpa/inet.h> 
#include <unistd.h> 
#include <fcntl.h> 
#include <sys/wait.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <getopt.h> 
#include <ip6tables.h> 
#include <linux/netfilter_ipv6/ip6_tables.h> 
#include <linux/netfilter_ipv6/ip6_nat_rule.h> 
 
static char * 
addr_to_numeric(const struct in6_addr *addrp) 
{ 
 /* 0000:0000:0000:0000:0000:000.000.000.000 
  * 0000:0000:0000:0000:0000:0000:0000:0000 */ 
 static char buf[50+1]; 

return (char *)inet_ntop(AF_INET6, addrp, buf, sizeof(buf)); 
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} 
 
static struct in6_addr * 
numeric_to_addr(const char *num) 
{ 
 static struct in6_addr ap; 
 int err; 
 if ((err=inet_pton(AF_INET6, num, &ap)) == 1) 
  return &ap; 
#ifdef DEBUG 
 fprintf(stderr, "\nnumeric2addr: %d\n", err); 
#endif 
 return (struct in6_addr *)NULL; 
} 
 

/* Source NAT data consists of a multi-range, indicating where to 
map to. */ 
 

struct ip6t_natinfo 
{ 
 struct ip6t_entry_target t; 
 struct ip6_nat_multi_range mr; 
}; 
 
/* Function which prints out usage message. */ 
static void 
help(void) 
{ 
 printf( 
"SNAT v%s options:\n" 
" --to-source <ipaddr>[-<ipaddr>][:port-port]\n" 
"    Address to map source to.\n" 
"    (You can use this more than once)\n\n", 
IPTABLES_VERSION); 
} 
 
static struct option opts[] = { 
 { "to-source", 1, 0, '1' }, 
 { 0 } 
}; 
 
/* Initialize the target. */ 
static void 
init(struct ip6t_entry_target *t, unsigned int *nfcache) 
{ 
 /* Can't cache this */ 
 *nfcache |= NFC_UNKNOWN; 
} 
 
static struct ip6t_natinfo * 

append_range(struct ip6t_natinfo *info, const struct 
ip6_nat_range *range) 

{ 
 unsigned int size; 
 
 /* One rangesize already in struct ipt_natinfo */ 
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size = IP6T_ALIGN(sizeof(*info) + info->mr.rangesize * 
sizeof(*range)); 

 
 info = realloc(info, size); 
 if (!info) 
  exit_error(OTHER_PROBLEM, "Out of memory\n"); 
 
 info->t.u.target_size = size; 
 info->mr.range[info->mr.rangesize] = *range; 
 info->mr.rangesize++; 
 
 return info; 
} 
 
/* Ranges expected in network order. */ 
static struct ip6t_entry_target * 
parse_to(char *arg, int portok, struct ip6t_natinfo *info) 
{ 
 struct ip6_nat_range range; 
 char *colon; 
 memset(&range, 0, sizeof(range)); 
 colon = strchr(arg, '@'); 
 struct in6_addr *ip; 
        
  

/*TB MP – This section deals with ports. The scope of our work 
did not require port mappings or IP ranges therefore this section 
was commented out and is untested*/ 

 /* 
   if(colon){  
 if (!portok) 
   exit_error(PARAMETER_PROBLEM, 
       "Need TCP or UDP with port specification"); 
  
 range.flags |= IP6_NAT_RANGE_PROTO_SPECIFIED; 
  
 port = atoi(colon+1); 
 if (port == 0 || port > 65535) 
   exit_error(PARAMETER_PROBLEM, 
       "Port `%s' not valid\n", colon+1); 
  
 dash = strchr(colon, '-'); 
 if (!dash) { 
   range.min.tcp.port 
     = range.max.tcp.port 
     = htons(port); 
 } else { 
   int maxport; 
    
   maxport = atoi(dash + 1); 
   if (maxport == 0 || maxport > 65535) 
     exit_error(PARAMETER_PROBLEM, 
         "Port `%s' not valid\n", dash+1); 
   if (maxport < port) 
      
     exit_error(PARAMETER_PROBLEM, 
         "Port range `%s' funky\n", colon+1); 
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   range.min.tcp.port = htons(port); 
   range.max.tcp.port = htons(maxport); 
 } 
  
 if (colon == arg) 
   return &(append_range(info, &range)->t); 
 *colon = '\0'; 
  
 
 range.flags |= IP6_NAT_RANGE_MAP_IPS; 
 dash = strchr(arg, '-'); 
 if (colon && dash && dash > colon) 
  dash = NULL; 
 
 if (dash) 
  *dash = '\0'; 
 */ 
 ip = numeric_to_addr(arg); 
 range.flags |= IP6_NAT_RANGE_MAP_IPS; 
 if (!ip) 

exit_error(PARAMETER_PROBLEM, "Bad IP address 
`%s'\n", arg); 

  
 range.min_ip.s6_addr32[0] = ip->s6_addr32[0]; 
 range.min_ip.s6_addr32[1] = ip->s6_addr32[1];  
 range.min_ip.s6_addr32[2] = ip->s6_addr32[2]; 
 range.min_ip.s6_addr32[3] = ip->s6_addr32[3];  
 
 /* 
 if (dash) { 
    ip = dotted_to_addr(dash+1); 
  if (!ip) 

exit_error(PARAMETER_PROBLEM, "Bad IP address 
`%s'\n", dash+1 

 } else{ 
 */ 
   
 return &(append_range(info, &range)->t); 
} 
 
/* Function which parses command options; returns true if it 
   ate an option */ 
static int 
parse(int c, char **argv, int invert, unsigned int *flags, 
      const struct ip6t_entry *entry, 
      struct ip6t_entry_target **target) 
{ 
 struct ip6t_natinfo *info = (void *)*target; 
 int portok; 
 
 if (entry->ipv6.proto == IPPROTO_TCP 
     || entry->ipv6.proto == IPPROTO_UDP) 
  portok = 1; 
 else 
  portok = 0; 
 
 switch (c) { 
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 case '1': 
  if (check_inverse(optarg, &invert, NULL, 0)) 
   exit_error(PARAMETER_PROBLEM, 
       "Unexpected `!' after --to-source"); 
 
  *target = parse_to(optarg, portok, info); 
  *flags = 1; 
  return 1; 
 default: 
  return 0; 
 } 
} 
 
/* Final check; must have specfied --to-source. */ 
static void final_check(unsigned int flags) 
{ 
 if (!flags) 
  exit_error(PARAMETER_PROBLEM, 
      "You must specify --to-source"); 
} 
 
static void print_range(const struct ip6_nat_range *r) 
{ 
   if (r->flags & IP6_NAT_RANGE_MAP_IPS) { 
   
  struct in6_addr a; 
  a.s6_addr32[0] = r->min_ip.s6_addr32[0]; 
  a.s6_addr32[1] = r->min_ip.s6_addr32[1]; 
  a.s6_addr32[2] = r->min_ip.s6_addr32[2]; 
  a.s6_addr32[3] = r->min_ip.s6_addr32[3]; 
  printf("%s", addr_to_numeric(&a)); 
  if ((r->max_ip.s6_addr32[0] != r->min_ip.s6_addr32[0]) || 
      (r->max_ip.s6_addr32[1] != r->min_ip.s6_addr32[1]) || 
      (r->max_ip.s6_addr32[2] != r->min_ip.s6_addr32[2]) || 
      (r->max_ip.s6_addr32[3] != r->min_ip.s6_addr32[3])) { 
   a.s6_addr32[0] = r->max_ip.s6_addr32[0]; 
   a.s6_addr32[1] = r->max_ip.s6_addr32[1]; 
   a.s6_addr32[2] = r->max_ip.s6_addr32[2]; 
   a.s6_addr32[3] = r->max_ip.s6_addr32[3]; 
    printf("-%s", addr_to_numeric(&a)); 
  } 
 } 
 if (r->flags & IP6_NAT_RANGE_PROTO_SPECIFIED) { 
  printf(":"); 
  printf("%hu", ntohs(r->min.tcp.port)); 
  if (r->max.tcp.port != r->min.tcp.port) 
   printf("-%hu", ntohs(r->max.tcp.port)); 
 } 
} 
 
/* Prints out the targinfo. */ 
static void 
print(const struct ip6t_ip6 *ip, 
      const struct ip6t_entry_target *target, 
      int numeric) 
{ 
 struct ip6t_natinfo *info = (void *)target; 
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 unsigned int i = 0; 
 
 printf("to: "); 
 for (i = 0; i < info->mr.rangesize; i++) { 
  print_range(&info->mr.range[i]); 
  printf(" "); 
 } 
} 
 
/* Saves the union ip6t_targinfo in parsable form to stdout. */ 
static void 
save(const struct ip6t_ip6 *ip, const struct ip6t_entry_target *target) 
{ 
 struct ip6t_natinfo *info = (void *)target; 
 unsigned int i = 0; 
 
 for (i = 0; i < info->mr.rangesize; i++) { 
  printf("--to-source "); 
  print_range(&info->mr.range[i]); 
  printf(" "); 
 } 
} 
 
static 
struct ip6tables_target snat 
= { NULL, 
    "SNAT", 
    IPTABLES_VERSION, 
    IP6T_ALIGN(sizeof(struct ip6_nat_multi_range)), 
    IP6T_ALIGN(sizeof(struct ip6_nat_multi_range)), 
    &help, 
    &init, 
    &parse, 
    &final_check, 
    &print, 
    &save, 
    opts 
}; 
 
void _init(void) 
{ 
 register_target6(&snat); 
} 
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APPENDIX D. TESTING RESULTS 

This appendix contains the Ethereal outputs for a 

series of connectivity tests. The purpose of these tests 

was to verify the functionality of the NAT implementation 

for several different protocols. The following sections 

will be labeled by the testing program, the machine on 

which the Ethereal output is collected and, if applicable, 

the interface of the system. The following figure shows the 

topology of the MYSEA IPv6 NAT testing environment. It 

illustrates the locations of the machines as well as their 

IPv6 addresses and MAC addresses. 

 

Figure 16.   MYSEA IPv6 NAT Testing Environment 
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PING6 – CLIENT 

This Ethereal output shows the packet sequence as seen 

by the eth0 interface of the client. The importance of this 

sequence is that an echo request was successfully sent to 

2004::2 and the reply was received by 2003::3. The 

following command was issued by the client to produce this 

result: 

# ping6 –c 1 2004::2 

 

No.     Time        Source                Destination           Protocol Info 
      1 0.000000    2003::3               ff02::1:ff00:1        ICMPv6   Neighbor 
solicitation 
 
Frame 1 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 33:33:ff:00:00:01 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      2 0.000213    2003::1               2003::3               ICMPv6   Neighbor 
advertisement 
 
Frame 2 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      3 0.000230    2003::3               2004::2               ICMPv6   Echo request 
 
Frame 3 (118 bytes on wire, 118 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      4 0.001486    2004::2               2003::3               ICMPv6   Echo reply 
 
Frame 4 (118 bytes on wire, 118 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      5 4.999079    fe80::2c0:a8ff:fe88:89f2 2003::3               ICMPv6   Neighbor 
solicitation 
 
Frame 5 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
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No.     Time        Source                Destination           Protocol Info 
      6 4.999106    2003::3               fe80::2c0:a8ff:fe88:89f2 ICMPv6   Neighbor 
advertisement 
 
Frame 6 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 

PING6 – SERVER 

This Ethereal output shows the packet sequence as seen 

by the eth0 interface of the server. The importance of this 

sequence is that an echo request was successfully forwarded 

to 2004::2 by the TPE at the address 2004::1. The following 

command was issued by the client to produce this result: 

# ping6 –c 1 2004::2 

 

No.     Time        Source                Destination           Protocol Info 
      1 0.000000    2004::1               ff02::1:ff00:2        ICMPv6   Neighbor 
solicitation 
 
Frame 1 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 33:33:ff:00:00:02 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      2 0.000036    2004::2               2004::1               ICMPv6   Neighbor 
advertisement 
 
Frame 2 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      3 0.000167    2004::1               2004::2               ICMPv6   Echo request 
 
Frame 3 (118 bytes on wire, 118 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      4 0.000181    2004::2               2004::1               ICMPv6   Echo reply 
 
Frame 4 (118 bytes on wire, 118 bytes captured) 
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
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No.     Time        Source                Destination           Protocol Info 
      5 4.995768    fe80::20d:56ff:feae:a500 2004::1               ICMPv6   Neighbor 
solicitation 
 
Frame 5 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      6 4.995992    2004::1               fe80::20d:56ff:feae:a500 ICMPv6   Neighbor 
advertisement 
 
Frame 6 (78 bytes on wire, 78 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      7 9.995195    fe80::2c0:a8ff:fe88:876c fe80::20d:56ff:feae:a500 ICMPv6   Neighbor 
solicitation 
 
Frame 7 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      8 9.995222    fe80::20d:56ff:feae:a500 fe80::2c0:a8ff:fe88:876c ICMPv6   Neighbor 
advertisement 
 
Frame 8 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 

PING6 – TPE – ETH0 

This tcpdump output shows the packet sequence as seen 

by the eth0 interface of the TPE. Tcpdump was used on the 

TPE because it is a native OS program and would not 

introduce new code to the kernel. The importance of this 

sequence is that an echo request from 2003::3 was forwarded 

to 2004::2 and the resulting reply was again forwarded to 

2003::3. Note that at this point, eth0 on the TPE, the 

address of the client is still the true address, i.e., 

2003::3. The following command was issued by the client to 

produce this result: 

# ping6 –c 1 2004::2 
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14:21:05.566665 2003::3 > ff02::1:ff00:1: icmp6: neighbor sol: who has 2003::1(src 
lladdr: 00:c0:a8:88:88:7d) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff 2003 0000 0000 0000 `.....:......... 
0x0010  0000 0000 0000 0003 ff02 0000 0000 0000 ................ 
0x0020  0000 0001 ff00 0001 8700 07ce 0000 0000 ................ 
0x0030  2003 0000 0000 0000 0000 0000 0000 0001 ................ 
0x0040  0101 00c0 a888 887d                     .......} 
 
 
 
14:21:05.566802 2003::1 > 2003::3: icmp6: neighbor adv: tgt is 2003::1(RSO)(tgt lladdr: 
00:c0:a8:88:89:f2) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff 2003 0000 0000 0000 `.....:......... 
0x0010  0000 0000 0000 0001 2003 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0003 8800 025a e000 0000 ...........Z.... 
0x0030  2003 0000 0000 0000 0000 0000 0000 0001 ................ 
0x0040  0201 00c0 a888 89f2                     ........ 
 
 
 
14:21:05.566893 2003::3 > 2004::2: icmp6: echo request (len 64, hlim 64) 
0x0000  6000 0000 0040 3a40 2003 0000 0000 0000 `....@:@........ 
0x0010  0000 0000 0000 0003 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 8000 78ae ea04 0001 ..........x..... 
0x0030  3817 b540 fc69 0800 0809 0a0b 0c0d 0e0f 8..@.i.......... 
0x0040  1011 1213 1415 1617 1819 1a1b 1c1d 1e1f ................ 
0x0050  2021                                    .! 
 
 
 
14:21:05.568097 2004::2 > 2003::3: icmp6: echo reply (len 64, hlim 63) 
0x0000  6000 0000 0040 3a3f 2004 0000 0000 0000 `....@:?........ 
0x0010  0000 0000 0000 0002 2003 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0003 8100 77ae ea04 0001 ..........w..... 
0x0030  3817 b540 fc69 0800 0809 0a0b 0c0d 0e0f 8..@.i.......... 
0x0040  1011 1213 1415 1617 1819 1a1b 1c1d 1e1f ................ 
0x0050  2021                                    .! 
 
 
 
14:21:10.565796 fe80::2c0:a8ff:fe88:89f2 > 2003::3: icmp6: neighbor sol: who has 
2003::3(src lladdr: 00:c0:a8:88:89:f2) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff fe80 0000 0000 0000 `.....:......... 
0x0010  02c0 a8ff fe88 89f2 2003 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0003 8700 d1a0 0000 0000 ................ 
0x0030  2003 0000 0000 0000 0000 0000 0000 0003 ................ 
0x0040  0101 00c0 a888 89f2                     ........ 
 
 
 
14:21:10.565871 2003::3 > fe80::2c0:a8ff:fe88:89f2: icmp6: neighbor adv: tgt is 
2003::3(SO)(tgt lladdr: 00:c0:a8:88:88:7d) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff 2003 0000 0000 0000 `.....:......... 
0x0010  0000 0000 0000 0003 fe80 0000 0000 0000 ................ 
0x0020  02c0 a8ff fe88 89f2 8800 7115 6000 0000 ..........q.`... 
0x0030  2003 0000 0000 0000 0000 0000 0000 0003 ................ 
0x0040  0201 00c0 a888 887d                     .......} 
 

PING6 – TPE – ETH1 

This tcpdump output shows the packet sequence as seen 

by the eth1 interface of the TPE. The importance of this 

sequence is that an echo request from the client received 

at 2004::1 was successfully forwarded to 2004::2 and the 
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resulting reply was receieved by 2004::1. Note that the 

address of the client is now masked by the NAT mechanism. 

The following command was issued by the client to produce 

this result: 

# ping6 –c 1 2004::2 

 

14:21:05.567757 2004::1 > ff02::1:ff00:2: icmp6: neighbor sol: who has 2004::2(src 
lladdr: 00:c0:a8:88:87:6c) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff 2004 0000 0000 0000 `.....:......... 
0x0010  0000 0000 0000 0001 ff02 0000 0000 0000 ................ 
0x0020  0000 0001 ff00 0002 8700 08dd 0000 0000 ................ 
0x0030  2004 0000 0000 0000 0000 0000 0000 0002 ................ 
0x0040  0101 00c0 a888 876c                     .......l 
 
 
14:21:05.567861 2004::2 > 2004::1: icmp6: neighbor adv: tgt is 2004::2(SO)(tgt lladdr: 
00:0d:56:ae:a5:00) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff 2004 0000 0000 0000 `.....:......... 
0x0010  0000 0000 0000 0002 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0001 8800 b9d6 6000 0000 ............`... 
0x0030  2004 0000 0000 0000 0000 0000 0000 0002 ................ 
0x0040  0201 000d 56ae a500                     ....V... 
 
 
14:21:05.567924 2004::1 > 2004::2: icmp6: echo request (len 64, hlim 63) 
0x0000  6000 0000 0040 3a3f 2004 0000 0000 0000 `....@:?........ 
0x0010  0000 0000 0000 0001 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 8000 78af ea04 0001 ..........x..... 
0x0030  3817 b540 fc69 0800 0809 0a0b 0c0d 0e0f 8..@.i.......... 
0x0040  1011 1213 1415 1617 1819 1a1b 1c1d 1e1f ................ 
0x0050  2021                                    .! 
 
 
14:21:05.568008 2004::2 > 2004::1: icmp6: echo reply (len 64, hlim 64) 
0x0000  6000 0000 0040 3a40 2004 0000 0000 0000 `....@:@........ 
0x0010  0000 0000 0000 0002 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0001 8100 77af ea04 0001 ..........w..... 
0x0030  3817 b540 fc69 0800 0809 0a0b 0c0d 0e0f 8..@.i.......... 
0x0040  1011 1213 1415 1617 1819 1a1b 1c1d 1e1f ................ 
0x0050  2021                                    .! 
 
 
14:21:10.563537 fe80::20d:56ff:feae:a500 > 2004::1: icmp6: neighbor sol: who has 
2004::1(src lladdr: 00:0d:56:ae:a5:00) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff fe80 0000 0000 0000 `.....:......... 
0x0010  020d 56ff feae a500 2004 0000 0000 0000 ..V............. 
0x0020  0000 0000 0000 0001 8700 40a1 0000 0000 ..........@..... 
0x0030  2004 0000 0000 0000 0000 0000 0000 0001 ................ 
0x0040  0101 000d 56ae a500                     ....V... 
 
 
14:21:10.563690 2004::1 > fe80::20d:56ff:feae:a500: icmp6: neighbor adv: tgt is 
2004::1(RS) (len 24, hlim 255) 
0x0000  6000 0000 0018 3aff 2004 0000 0000 0000 `.....:......... 
0x0010  0000 0000 0000 0001 fe80 0000 0000 0000 ................ 
0x0020  020d 56ff feae a500 8800 7c65 c000 0000 ..V.......|e.... 
0x0030  2004 0000 0000 0000 0000 0000 0000 0001 ................ 
 
 
14:21:15.562827 fe80::2c0:a8ff:fe88:876c > fe80::20d:56ff:feae:a500: icmp6: neighbor sol: 
who has fe80::20d:56ff:feae:a500(src lladdr: 00:c0:a8:88:87:6c) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff fe80 0000 0000 0000 `.....:......... 
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0x0010  02c0 a8ff fe88 876c fe80 0000 0000 0000 .......l........ 
0x0020  020d 56ff feae a500 8700 203f 0000 0000 ..V........?.... 
0x0030  fe80 0000 0000 0000 020d 56ff feae a500 ..........V..... 
0x0040  0101 00c0 a888 876c                     .......l 
 
 
14:21:15.562925 fe80::20d:56ff:feae:a500 > fe80::2c0:a8ff:fe88:876c: icmp6: neighbor adv: 
tgt is fe80::20d:56ff:feae:a500(SO)(tgt lladdr: 00:0d:56:ae:a5:00) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff fe80 0000 0000 0000 `.....:......... 
0x0010  020d 56ff feae a500 fe80 0000 0000 0000 ..V............. 
0x0020  02c0 a8ff fe88 876c 8800 f337 6000 0000 .......l...7`... 
0x0030  fe80 0000 0000 0000 020d 56ff feae a500 ..........V..... 
0x0040  0201 000d 56ae a500                     ....V... 
 

RLOGIN – CLIENT 

This Ethereal output shows the packet sequence as seen 

by the eth0 interface of the client. The importance of this 

sequence is that the rlogin sequence was successfully sent 

to 2004::2 and the replies were received by 2003::3. The 

following command was issued by the client to produce this 

result: 

# rlogin 2004::2 

 

No.     Time        Source                Destination           Protocol Info  
      1 0.000000    2003::3               2004::2               TCP      1023 > login 
[SYN] Seq=0 Ack=0 Win=5760 Len=0 MSS=1440 TSV=1146738 TSER=0 WS=0 
 
Frame 1 (94 bytes on wire, 94 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 0, Ack: 
0, Len: 0 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      2 0.001140    fe80::2c0:a8ff:fe88:89f2 ff02::1:ff00:3        ICMPv6   Neighbor 
solicitation 
 
Frame 2 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 33:33:ff:00:00:03 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      3 0.001168    2003::3               fe80::2c0:a8ff:fe88:89f2 ICMPv6   Neighbor 
advertisement 
 
Frame 3 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
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      4 0.001278    2004::2               2003::3               TCP      login > 1023 
[SYN, ACK] Seq=0 Ack=1 Win=5712 Len=0 MSS=1440 TSV=27902 TSER=1146738 WS=0 
 
Frame 4 (94 bytes on wire, 94 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 0, Ack: 
1, Len: 0 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      5 0.001295    2003::3               2004::2               TCP      1023 > login 
[ACK] Seq=1 Ack=1 Win=5760 Len=0 TSV=1146738 TSER=27902 
 
Frame 5 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 1, Ack: 
1, Len: 0 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      6 0.001365    2003::3               2004::2               Rlogin   User name: root, 
Start Handshake 
 
Frame 6 (87 bytes on wire, 87 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 1, Ack: 
1, Len: 1 
Rlogin Protocol 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      7 0.001535    2004::2               2003::3               TCP      login > 1023 
[ACK] Seq=1 Ack=2 Win=5712 Len=0 TSV=27903 TSER=1146738 
 
Frame 7 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 1, Ack: 
2, Len: 0 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      8 0.001658    2003::3               2004::2               Rlogin   User name: root, 
Data: root 
 
Frame 8 (109 bytes on wire, 109 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 2, Ack: 
1, Len: 23 
Rlogin Protocol 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      9 0.001830    2004::2               2003::3               TCP      login > 1023 
[ACK] Seq=1 Ack=25 Win=5712 Len=0 TSV=27903 TSER=1146738 
 
Frame 9 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 1, Ack: 
25, Len: 0 
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No.     Time        Source                Destination           Protocol Info 
     10 0.154152    2004::2               2003::3               Rlogin   User name: root, 
Start Handshake 
 
Frame 10 (87 bytes on wire, 87 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 1, Ack: 
25, Len: 1 
Rlogin Protocol 
 
 
 
No.     Time        Source                Destination           Protocol Info 
     11 0.154329    2003::3               2004::2               TCP      1023 > login 
[ACK] Seq=25 Ack=2 Win=5760 Len=0 TSV=1146753 TSER=27918 
 
Frame 11 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 25, 
Ack: 2, Len: 0 
 
 
 
No.     Time        Source                Destination           Protocol Info 
     12 0.155758    2004::2               2003::3               Rlogin   User name: root, 
Data: Password:  
 
Frame 12 (96 bytes on wire, 96 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 2, Ack: 
25, Len: 10 
Rlogin Protocol 
 
 
 
No.     Time        Source                Destination           Protocol Info 
     13 0.155898    2003::3               2004::2               TCP      1023 > login 
[ACK] Seq=25 Ack=12 Win=5760 Len=0 TSV=1146753 TSER=27918 
 
Frame 13 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 25, 
Ack: 12, Len: 0 
 

RLOGIN – SERVER 

This Ethereal output shows the packet sequence as seen 

by the eth0 interface of the server. The importance of this 

sequence is that the rlogin request was successfully 

forwarded to 2004::2 by the TPE at the address 2004::1. 

Note that the address of the client is successfully masked 

by the NAT mechanism in the TPE. The following command was 

issued by the client to produce this result: 

# rlogin 2004::2 
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No.     Time        Source                Destination           Protocol Info  
      1 0.000000    fe80::20d:56ff:feae:a500 ff02::1:ff00:2        ICMPv6   Multicast 
listener report 
 
Frame 1 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 33:33:ff:00:00:02 
Internet Protocol Version 6 
Hop-by-hop Option Header  
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      2 61.169069   2004::1               ff02::1:ff00:2        ICMPv6   Neighbor 
solicitation 
 
Frame 2 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 33:33:ff:00:00:02 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      3 61.169105   2004::2               2004::1               ICMPv6   Neighbor 
advertisement 
 
Frame 3 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      4 61.169243   2004::1               2004::2               TCP      1023 > login 
[SYN] Seq=0 Ack=0 Win=5760 Len=0 MSS=1440 TSV=1146738 TSER=0 WS=0 
 
Frame 4 (94 bytes on wire, 94 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 0, Ack: 
0, Len: 0 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      5 61.169504   2004::2               2004::1               TCP      login > 1023 
[SYN, ACK] Seq=0 Ack=1 Win=5712 Len=0 MSS=1440 TSV=27902 TSER=1146738 WS=0 
 
Frame 5 (94 bytes on wire, 94 bytes captured) 
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 0, Ack: 
1, Len: 0 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      6 61.170227   2004::1               2004::2               TCP      1023 > login 
[ACK] Seq=1 Ack=1 Win=5760 Len=0 TSV=1146738 TSER=27902 
 
Frame 6 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 1, Ack: 
1, Len: 0 
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No.     Time        Source                Destination           Protocol Info 
      7 61.170289   2004::1               2004::2               Rlogin   User name: root, 
Start Handshake 
 
Frame 7 (87 bytes on wire, 87 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 1, Ack: 
1, Len: 1 
Rlogin Protocol 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      8 61.170302   2004::2               2004::1               TCP      login > 1023 
[ACK] Seq=1 Ack=2 Win=5712 Len=0 TSV=27903 TSER=1146738 
 
Frame 8 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 1, Ack: 
2, Len: 0 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      9 61.170592   2004::1               2004::2               Rlogin   User name: root, 
Data: root 
 
Frame 9 (109 bytes on wire, 109 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 2, Ack: 
1, Len: 23 
Rlogin Protocol 
 
 
 
No.     Time        Source                Destination           Protocol Info 
     10 61.170597   2004::2               2004::1               TCP      login > 1023 
[ACK] Seq=1 Ack=25 Win=5712 Len=0 TSV=27903 TSER=1146738 
 
Frame 10 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 1, Ack: 
25, Len: 0 
 
 
 
No.     Time        Source                Destination           Protocol Info 
     11 61.192370   2004::2               2004::1               TCP      32803 > auth 
[SYN] Seq=0 Ack=0 Win=5760 Len=0 MSS=1440 TSV=27905 TSER=0 WS=0 
 
Frame 11 (94 bytes on wire, 94 bytes captured) 
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: 32803 (32803), Dst Port: auth (113), Seq: 0, 
Ack: 0, Len: 0 
 
 
 
No.     Time        Source                Destination           Protocol Info 
     12 61.192547   2004::1               2004::2               TCP      auth > 32803 
[RST, ACK] Seq=0 Ack=0 Win=0 Len=0 
 
Frame 12 (74 bytes on wire, 74 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00 
Internet Protocol Version 6 
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Transmission Control Protocol, Src Port: auth (113), Dst Port: 32803 (32803), Seq: 0, 
Ack: 0, Len: 0 
 
 
 
No.     Time        Source                Destination           Protocol Info 
     13 61.322880   2004::2               2004::1               Rlogin   User name: root, 
Start Handshake 
 
Frame 13 (87 bytes on wire, 87 bytes captured) 
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 1, Ack: 
25, Len: 1 
Rlogin Protocol 
 
 
 
No.     Time        Source                Destination           Protocol Info 
     14 61.323266   2004::1               2004::2               TCP      1023 > login 
[ACK] Seq=25 Ack=2 Win=5760 Len=0 TSV=1146753 TSER=27918 
 
Frame 14 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 25, 
Ack: 2, Len: 0 
 
 
 
No.     Time        Source                Destination           Protocol Info 
     15 61.324522   2004::2               2004::1               Rlogin   User name: root, 
Data: Password:  
 
Frame 15 (96 bytes on wire, 96 bytes captured) 
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 2, Ack: 
25, Len: 10 
Rlogin Protocol 
 
 
 
No.     Time        Source                Destination           Protocol Info 
     16 61.324830   2004::1               2004::2               TCP      1023 > login 
[ACK] Seq=25 Ack=12 Win=5760 Len=0 TSV=1146753 TSER=27918 
 
Frame 16 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00 
Internet Protocol Version 6 
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 25, 
Ack: 12, Len: 0 
 

RLOGIN – TPE – ETH0 

This tcpdump output shows the packet sequence as seen 

by the eth0 interface of the TPE. The importance of this 

sequence is that the rlogin request from 2003::3 was 

forwarded to 2004::2 and the resulting reply was again 

forwarded to 2003::3. Note that at this point, the address 

of the client is still the true address. The following 

command was issued by the client to produce this result: 
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# rlogin 2004::2 

 

17:28:06.644285 2003::3.1023 > 2004::2.login: S [tcp sum ok] 2268744467:2268744467(0) win 
5760 <mss 1440,sackOK,timestamp 1146738 0,nop,wscale 0> (len 40, hlim 64) 
0x0000  6000 0000 0028 0640 2003 0000 0000 0000 `....(.@........ 
0x0010  0000 0000 0000 0003 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 03ff 0201 873a 4b13 .............:K. 
0x0030  0000 0000 a002 1680 99be 0000 0204 05a0 ................ 
0x0040  0402 080a 0011 7f72 0000 0000 0103 0300 .......r........ 
 
 
17:28:06.645375 fe80::2c0:a8ff:fe88:89f2 > ff02::1:ff00:3: icmp6: neighbor sol: who has 
2003::3(src lladdr: 00:c0:a8:88:89:f2) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff fe80 0000 0000 0000 `.....:......... 
0x0010  02c0 a8ff fe88 89f2 ff02 0000 0000 0000 ................ 
0x0020  0000 0001 ff00 0003 8700 f39e 0000 0000 ................ 
0x0030  2003 0000 0000 0000 0000 0000 0000 0003 ................ 
0x0040  0101 00c0 a888 89f2                     ........ 
 
 
17:28:06.645447 2003::3 > fe80::2c0:a8ff:fe88:89f2: icmp6: neighbor adv: tgt is 
2003::3(SO)(tgt lladdr: 00:c0:a8:88:88:7d) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff 2003 0000 0000 0000 `.....:......... 
0x0010  0000 0000 0000 0003 fe80 0000 0000 0000 ................ 
0x0020  02c0 a8ff fe88 89f2 8800 7115 6000 0000 ..........q.`... 
0x0030  2003 0000 0000 0000 0000 0000 0000 0003 ................ 
0x0040  0201 00c0 a888 887d                     .......} 
 
 
17:28:06.645510 2004::2.login > 2003::3.1023: S [tcp sum ok] 3072001763:3072001763(0) ack 
2268744468 win 5712 <mss 1440,sackOK,timestamp 27902 1146738,nop,wscale 0> (len 40, hlim 
63) 
0x0000  6000 0000 0028 063f 2004 0000 0000 0000 `....(.?........ 
0x0010  0000 0000 0000 0002 2003 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0003 0201 03ff b71b 06e3 ................ 
0x0030  873a 4b14 a012 1650 6ee0 0000 0204 05a0 .:K....Pn....... 
0x0040  0402 080a 0000 6cfe 0011 7f72 0103 0300 ......l....r.... 
 
 
17:28:06.645574 2003::3.1023 > 2004::2.login: . [tcp sum ok] 1:1(0) ack 1 win 5760 
<nop,nop,timestamp 1146738 27902> (len 32, hlim 64) 
0x0000  6000 0000 0020 0640 2003 0000 0000 0000 `......@........ 
0x0010  0000 0000 0000 0003 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 03ff 0201 873a 4b14 .............:K. 
0x0030  b71b 06e4 8010 1680 9d61 0000 0101 080a .........a...... 
0x0040  0011 7f72 0000 6cfe                     ...r..l. 
 
 
17:28:06.645644 2003::3.1023 > 2004::2.login: P [tcp sum ok] 1:2(1) ack 1 win 5760 
<nop,nop,timestamp 1146738 27902> (len 33, hlim 64) 
0x0000  6000 0000 0021 0640 2003 0000 0000 0000 `....!.@........ 
0x0010  0000 0000 0000 0003 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 03ff 0201 873a 4b14 .............:K. 
0x0030  b71b 06e4 8018 1680 9d58 0000 0101 080a .........X...... 
0x0040  0011 7f72 0000 6cfe 00                  ...r..l.. 
 
 
17:28:06.645769 2004::2.login > 2003::3.1023: . [tcp sum ok] 1:1(0) ack 2 win  
5712 <nop,nop,timestamp 27903 1146738> (len 32, hlim 63) 
0x0000  6000 0000 0020 063f 2004 0000 0000 0000 `......?........ 
0x0010  0000 0000 0000 0002 2003 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0003 0201 03ff b71b 06e4 ................ 
0x0030  873a 4b15 8010 1650 9d8f 0000 0101 080a .:K....P........ 
0x0040  0000 6cff 0011 7f72                     ..l....r 
 
 
17:28:06.645940 2003::3.1023 > 2004::2.login: P 2:25(23) ack 1 win 5760 
<nop,nop,timestamp 1146738 27903> (len 55, hlim 64) 
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0x0000  6000 0000 0037 0640 2003 0000 0000 0000 `....7.@........ 
0x0010  0000 0000 0000 0003 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 03ff 0201 873a 4b15 .............:K. 
0x0030  b71b 06e4 8018 1680 6e3d 0000 0101 080a ........n=...... 
0x0040  0011 7f72 0000 6cff 726f 6f74 0061 646d ...r..l.root.adm 
0x0050  696e                                    in 
 
 
17:28:06.646065 2004::2.login > 2003::3.1023: . [tcp sum ok] 1:1(0) ack 25 win 5712 
<nop,nop,timestamp 27903 1146738> (len 32, hlim 63) 
0x0000  6000 0000 0020 063f 2004 0000 0000 0000 `......?........ 
0x0010  0000 0000 0000 0002 2003 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0003 0201 03ff b71b 06e4 ................ 
0x0030  873a 4b2c 8010 1650 9d78 0000 0101 080a .:K,...P.x...... 
0x0040  0000 6cff 0011 7f72                     ..l....r 
 
 
17:28:06.798386 2004::2.login > 2003::3.1023: P [tcp sum ok] 1:2(1) ack 25 win 5712 
<nop,nop,timestamp 27918 1146738> (len 33, hlim 63) 
0x0000  6000 0000 0021 063f 2004 0000 0000 0000 `....!.?........ 
0x0010  0000 0000 0000 0002 2003 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0003 0201 03ff b71b 06e4 ................ 
0x0030  873a 4b2c 8018 1650 9d60 0000 0101 080a .:K,...P.`...... 
0x0040  0000 6d0e 0011 7f72 00                  ..m....r. 
 
 
17:28:06.798613 2003::3.1023 > 2004::2.login: . [tcp sum ok] 25:25(0) ack 2 win 5760 
<nop,nop,timestamp 1146753 27918> (len 32, hlim 64) 
0x0000  6000 0000 0020 0640 2003 0000 0000 0000 `......@........ 
0x0010  0000 0000 0000 0003 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 03ff 0201 873a 4b2c .............:K, 
0x0030  b71b 06e5 8010 1680 9d29 0000 0101 080a .........)...... 
0x0040  0011 7f81 0000 6d0e                     ......m. 
 
 
17:28:06.799994 2004::2.login > 2003::3.1023: P [tcp sum ok] 2:12(10) ack 25 win 5712 
<nop,nop,timestamp 27918 1146753> (len 42, hlim 63) 
0x0000  6000 0000 002a 063f 2004 0000 0000 0000 `....*.?........ 
0x0010  0000 0000 0000 0002 2003 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0003 0201 03ff b71b 06e5 ................ 
0x0030  873a 4b2c 8018 1650 b57e 0000 0101 080a .:K,...P.~...... 
0x0040  0000 6d0e 0011 7f81 5061 7373 776f 7264 ..m.....Password 
0x0050  3a20                                    :. 
 
 
17:28:06.800181 2003::3.1023 > 2004::2.login: . [tcp sum ok] 25:25(0) ack 12 win 5760 
<nop,nop,timestamp 1146753 27918> (len 32, hlim 64) 
0x0000  6000 0000 0020 0640 2003 0000 0000 0000 `......@........ 
0x0010  0000 0000 0000 0003 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 03ff 0201 873a 4b2c .............:K, 
0x0030  b71b 06ef 8010 1680 9d1f 0000 0101 080a ................ 
0x0040  0011 7f81 0000 6d0e                     ......m. 
 

RLOGIN – TPE – ETH1 

This tcpdump output shows the packet sequence as seen 

by the eth1 interface of the TPE. The importance of this 

sequence is that an rlogin session from the client was 

translated to appear as if it came from 2004::1.  The 

translated packet was successfully communicated to 2004::2 

and the resulting replies were received by 2004::1. Note 

that the address of the client is now masked by the NAT 
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mechanism. The following command was issued by the client 

to produce this result: 

# rlogin 2004::2 

17:28:06.644443 2004::1 > ff02::1:ff00:2: icmp6: neighbor sol: who has 2004::2(src 
lladdr: 00:c0:a8:88:87:6c) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff 2004 0000 0000 0000 `.....:......... 
0x0010  0000 0000 0000 0001 ff02 0000 0000 0000 ................ 
0x0020  0000 0001 ff00 0002 8700 08dd 0000 0000 ................ 
0x0030  2004 0000 0000 0000 0000 0000 0000 0002 ................ 
0x0040  0101 00c0 a888 876c                     .......l 
 
 
17:28:06.644550 2004::2 > 2004::1: icmp6: neighbor adv: tgt is 2004::2(SO)(tgt lladdr: 
00:0d:56:ae:a5:00) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff 2004 0000 0000 0000 `.....:......... 
0x0010  0000 0000 0000 0002 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0001 8800 b9d6 6000 0000 ............`... 
0x0030  2004 0000 0000 0000 0000 0000 0000 0002 ................ 
0x0040  0201 000d 56ae a500                     ....V... 
 
 
17:28:06.644623 2004::1.1023 > 2004::2.login: S [tcp sum ok] 2268744467:2268744467(0) win 
5760 <mss 1440,sackOK,timestamp 1146738 0,nop,wscale 0> (len 40, hlim 63) 
0x0000  6000 0000 0028 063f 2004 0000 0000 0000 `....(.?........ 
0x0010  0000 0000 0000 0001 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 03ff 0201 873a 4b13 .............:K. 
0x0030  0000 0000 a002 1680 99bf 0000 0204 05a0 ................ 
0x0040  0402 080a 0011 7f72 0000 0000 0103 0300 .......r........ 
 
 
17:28:06.644947 2004::2.login > 2004::1.1023: S [tcp sum ok] 3072001763:3072001763(0) ack 
2268744468 win 5712 <mss 1440,sackOK,timestamp 27902 1146738,nop,wscale 0> (len 40, hlim 
64) 
0x0000  6000 0000 0028 0640 2004 0000 0000 0000 `....(.@........ 
0x0010  0000 0000 0000 0002 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0001 0201 03ff b71b 06e3 ................ 
0x0030  873a 4b14 a012 1650 6ee1 0000 0204 05a0 .:K....Pn....... 
0x0040  0402 080a 0000 6cfe 0011 7f72 0103 0300 ......l....r.... 
 
 
17:28:06.645599 2004::1.1023 > 2004::2.login: . [tcp sum ok] 1:1(0) ack 1 win 5760 
<nop,nop,timestamp 1146738 27902> (len 32, hlim 63) 
0x0000  6000 0000 0020 063f 2004 0000 0000 0000 `......?........ 
0x0010  0000 0000 0000 0001 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 03ff 0201 873a 4b14 .............:K. 
0x0030  b71b 06e4 8010 1680 9d62 0000 0101 080a .........b...... 
0x0040  0011 7f72 0000 6cfe                     ...r..l. 
 
 
17:28:06.645667 2004::1.1023 > 2004::2.login: P [tcp sum ok] 1:2(1) ack 1 win 5760 
<nop,nop,timestamp 1146738 27902> (len 33, hlim 63) 
0x0000  6000 0000 0021 063f 2004 0000 0000 0000 `....!.?........ 
0x0010  0000 0000 0000 0001 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 03ff 0201 873a 4b14 .............:K. 
0x0030  b71b 06e4 8018 1680 9d59 0000 0101 080a .........Y...... 
0x0040  0011 7f72 0000 6cfe 00                  ...r..l.. 
 
 
17:28:06.645745 2004::2.login > 2004::1.1023: . [tcp sum ok] 1:1(0) ack 2 win 5712 
<nop,nop,timestamp 27903 1146738> (len 32, hlim 64) 
0x0000  6000 0000 0020 0640 2004 0000 0000 0000 `......@........ 
0x0010  0000 0000 0000 0002 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0001 0201 03ff b71b 06e4 ................ 
0x0030  873a 4b15 8010 1650 9d90 0000 0101 080a .:K....P........ 
0x0040  0000 6cff 0011 7f72                     ..l....r 
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17:28:06.645966 2004::1.1023 > 2004::2.login: P 2:25(23) ack 1 win 5760 
<nop,nop,timestamp 1146738 27903> (len 55, hlim 63) 
0x0000  6000 0000 0037 063f 2004 0000 0000 0000 `....7.?........ 
0x0010  0000 0000 0000 0001 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 03ff 0201 873a 4b15 .............:K. 
0x0030  b71b 06e4 8018 1680 6e3e 0000 0101 080a ........n>...... 
0x0040  0011 7f72 0000 6cff 726f 6f74 0061 646d ...r..l.root.adm 
0x0050  696e                                    in 
 
 
17:28:06.646040 2004::2.login > 2004::1.1023: . [tcp sum ok] 1:1(0) ack 25 win 5712 
<nop,nop,timestamp 27903 1146738> (len 32, hlim 64) 
0x0000  6000 0000 0020 0640 2004 0000 0000 0000 `......@........ 
0x0010  0000 0000 0000 0002 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0001 0201 03ff b71b 06e4 ................ 
0x0030  873a 4b2c 8010 1650 9d79 0000 0101 080a .:K,...P.y...... 
0x0040  0000 6cff 0011 7f72                     ..l....r 
 
 
17:28:06.667824 2004::2.32803 > 2004::1.auth: S [tcp sum ok] 3060071179:3060071179(0) win 
5760 <mss 1440,sackOK,timestamp 27905 0,nop,wscale 0> (len 40, hlim 64) 
0x0000  6000 0000 0028 0640 2004 0000 0000 0000 `....(.@........ 
0x0010  0000 0000 0000 0002 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0001 8023 0071 b664 fb0b .........#.q.d.. 
0x0030  0000 0000 a002 1680 528a 0000 0204 05a0 ........R....... 
0x0040  0402 080a 0000 6d01 0000 0000 0103 0300 ......m......... 
 
 
17:28:06.667925 2004::1.auth > 2004::2.32803: R [tcp sum ok] 0:0(0) ack 3060071180 win 0 
(len 20, hlim 64) 
0x0000  6000 0000 0014 0640 2004 0000 0000 0000 `......@........ 
0x0010  0000 0000 0000 0001 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 0071 8023 0000 0000 .........q.#.... 
0x0030  b664 fb0c 5014 0000 3dc0 0000           .d..P...=... 
 
 
17:28:06.798329 2004::2.login > 2004::1.1023: P [tcp sum ok] 1:2(1) ack 25 win 5712 
<nop,nop,timestamp 27918 1146738> (len 33, hlim 64) 
0x0000  6000 0000 0021 0640 2004 0000 0000 0000 `....!.@........ 
0x0010  0000 0000 0000 0002 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0001 0201 03ff b71b 06e4 ................ 
0x0030  873a 4b2c 8018 1650 9d61 0000 0101 080a .:K,...P.a...... 
0x0040  0000 6d0e 0011 7f72 00                  ..m....r. 
 
 
17:28:06.798639 2004::1.1023 > 2004::2.login: . [tcp sum ok] 25:25(0) ack 2 win 5760 
<nop,nop,timestamp 1146753 27918> (len 32, hlim 63) 
0x0000  6000 0000 0020 063f 2004 0000 0000 0000 `......?........ 
0x0010  0000 0000 0000 0001 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 03ff 0201 873a 4b2c .............:K, 
0x0030  b71b 06e5 8010 1680 9d2a 0000 0101 080a .........*...... 
0x0040  0011 7f81 0000 6d0e                     ......m. 
 
 
17:28:06.799969 2004::2.login > 2004::1.1023: P [tcp sum ok] 2:12(10) ack 25 win 5712 
<nop,nop,timestamp 27918 1146753> (len 42, hlim 64) 
0x0000  6000 0000 002a 0640 2004 0000 0000 0000 `....*.@........ 
0x0010  0000 0000 0000 0002 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0001 0201 03ff b71b 06e5 ................ 
0x0030  873a 4b2c 8018 1650 b57f 0000 0101 080a .:K,...P........ 
0x0040  0000 6d0e 0011 7f81 5061 7373 776f 7264 ..m.....Password 
0x0050  3a20                                    :. 
 
 
17:28:06.800205 2004::1.1023 > 2004::2.login: . [tcp sum ok] 25:25(0) ack 12 win 5760 
<nop,nop,timestamp 1146753 27918> (len 32, hlim 63) 
0x0000  6000 0000 0020 063f 2004 0000 0000 0000 `......?........ 
0x0010  0000 0000 0000 0001 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 03ff 0201 873a 4b2c .............:K, 
0x0030  b71b 06ef 8010 1680 9d20 0000 0101 080a ................ 
0x0040  0011 7f81 0000 6d0e                     ......m. 



213 

 

TRACEROUTE6 – CLIENT 

This Ethereal output shows the packet sequence as seen 

by the eth0 interface of the client. The importance of this 

sequence is that a traceroute6 UDP packet sequence was 

successfully sent to 2004::2 and the reply was received by 

2003::3. The following command was issued by the client to 

produce this result: 

# traceroute6 2004::2 

 

No.     Time        Source                Destination           

Protocol Info 

      1 0.000000    2003::3               2004::2               UDP      Source port: 
32769  Destination port: 33434 
 
Frame 1 (78 bytes on wire, 78 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2 
Internet Protocol Version 6 
User Datagram Protocol, Src Port: 32769 (32769), Dst Port: 33434 (33434) 
Data (16 bytes) 
 
0000  00 00 07 b3 00 00 00 01 b1 2f b5 40 80 9f 01 00   ........./.@.... 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      2 0.000565    2003::1               ff02::1:ff00:3        ICMPv6   Neighbor 
solicitation 
 
Frame 2 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 33:33:ff:00:00:03 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      3 0.000602    2003::3               2003::1               ICMPv6   Neighbor 
advertisement 
 
Frame 3 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      4 0.000714    2003::1               2003::3               ICMPv6   Time exceeded 
(In-transit) 
 
Frame 4 (126 bytes on wire, 126 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
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No.     Time        Source                Destination           Protocol Info 
      5 0.031311    2003::3               2004::2               UDP      Source port: 
32769  Destination port: 33434 
 
Frame 5 (78 bytes on wire, 78 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2 
Internet Protocol Version 6 
User Datagram Protocol, Src Port: 32769 (32769), Dst Port: 33434 (33434) 
Data (16 bytes) 
 
0000  00 00 07 b3 00 00 00 02 b1 2f b5 40 d0 19 02 00   ........./.@.... 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      6 0.031928    2004::2               2003::3               ICMPv6   Unreachable 
(Port unreachable) 
 
Frame 6 (126 bytes on wire, 126 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      7 5.030159    fe80::2c0:a8ff:fe88:887d 2003::1               ICMPv6   Neighbor 
solicitation 
 
Frame 7 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      8 5.030330    2003::1               fe80::2c0:a8ff:fe88:887d ICMPv6   Neighbor 
advertisement 
 
Frame 8 (78 bytes on wire, 78 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      9 10.030400   fe80::2c0:a8ff:fe88:89f2 fe80::2c0:a8ff:fe88:887d ICMPv6   Neighbor 
solicitation 
 
Frame 9 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
     10 10.030427   fe80::2c0:a8ff:fe88:887d fe80::2c0:a8ff:fe88:89f2 ICMPv6   Neighbor 
advertisement 
 
Frame 10 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
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TRACEROUTE6 – SERVER 

This Ethereal output shows the packet sequence as seen 

by the eth0 interface of the server. The importance of this 

sequence is that a traceroute6 UDP packet sequence was 

successfully forwarded to 2004::2 by the TPE at the address 

2004::1. The following command was issued by the client to 

produce this result: 

# traceroute6 2004::2 

 

No.     Time        Source                Destination           Protocol Info 
      1 0.000000    2004::1               ff02::1:ff00:2        ICMPv6   Neighbor 
solicitation 
 
Frame 1 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 33:33:ff:00:00:02 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      2 0.000035    2004::2               2004::1               ICMPv6   Neighbor 
advertisement 
 
Frame 2 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      3 0.000166    2004::1               2004::2               UDP      Source port: 
32769  Destination port: 33434 
 
Frame 3 (78 bytes on wire, 78 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00 
Internet Protocol Version 6 
User Datagram Protocol, Src Port: 32769 (32769), Dst Port: 33434 (33434) 
Data (16 bytes) 
 
0000  00 00 07 b3 00 00 00 02 b1 2f b5 40 d0 19 02 00   ........./.@.... 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      4 0.000179    2004::2               2004::1               ICMPv6   Unreachable 
(Port unreachable) 
 
Frame 4 (126 bytes on wire, 126 bytes captured) 
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      5 4.994547    fe80::20d:56ff:feae:a500 2004::1               ICMPv6   Neighbor 
solicitation 
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Frame 5 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      6 4.994766    2004::1               fe80::20d:56ff:feae:a500 ICMPv6   Neighbor 
advertisement 
 
Frame 6 (78 bytes on wire, 78 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      7 9.994194    fe80::2c0:a8ff:fe88:876c fe80::20d:56ff:feae:a500 ICMPv6   Neighbor 
solicitation 
 
Frame 7 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 
 
 
No.     Time        Source                Destination           Protocol Info 
      8 9.994220    fe80::20d:56ff:feae:a500 fe80::2c0:a8ff:fe88:876c ICMPv6   Neighbor 
advertisement 
 
Frame 8 (86 bytes on wire, 86 bytes captured) 
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c 
Internet Protocol Version 6 
Internet Control Message Protocol v6 
 

TRACEROUTE6 – TPE – ETH0 

This tcpdump output shows the packet sequence as seen 

by the eth0 interface of the TPE. The importance of this 

sequence is that the traceroute6 UDP packets from 2003::3 

were forwarded to 2004::2 and the resulting replies were 

again forwarded to 2003::3. Note that at this point, the 

address of the client is still the true address. The 

following command was issued by the client to produce this 

result: 

# traceroute6 2004::2 

 

16:05:30.255708 2003::3.32769 > 2004::2.traceroute: [udp sum ok] udp 16 [hlim 1] (len 24) 
0x0000  6000 0000 0018 1101 2003 0000 0000 0000 `............... 
0x0010  0000 0000 0000 0003 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 8001 829a 0018 cd52 ...............R 
0x0030  0000 07b3 0000 0001 b12f b540 809f 0100 ........./.@.... 
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16:05:30.256221 2003::1 > ff02::1:ff00:3: icmp6: neighbor sol: who has 2003::3(src 
lladdr: 00:c0:a8:88:89:f2) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff 2003 0000 0000 0000 `.....:......... 
0x0010  0000 0000 0000 0001 ff02 0000 0000 0000 ................ 
0x0020  0000 0001 ff00 0003 8700 0657 0000 0000 ...........W.... 
0x0030  2003 0000 0000 0000 0000 0000 0000 0003 ................ 
0x0040  0101 00c0 a888 89f2                     ........ 
 
 
16:05:30.256305 2003::3 > 2003::1: icmp6: neighbor adv: tgt is 2003::3(SO)(tgt lladdr: 
00:c0:a8:88:88:7d) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff 2003 0000 0000 0000 `.....:......... 
0x0010  0000 0000 0000 0003 2003 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0001 8800 83cd 6000 0000 ............`... 
0x0030  2003 0000 0000 0000 0000 0000 0000 0003 ................ 
0x0040  0201 00c0 a888 887d                     .......} 
 
 
16:05:30.256371 2003::1 > 2003::3: [|icmp6] (len 72, hlim 64) 
0x0000  6000 0000 0048 3a40 2003 0000 0000 0000 `....H:@........ 
0x0010  0000 0000 0000 0001 2003 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0003 0300 4b83 0000 0000 ..........K..... 
0x0030  6000 0000 0018 1101 2003 0000 0000 0000 `............... 
0x0040  0000 0000 0000 0003 2004 0000 0000 0000 ................ 
0x0050  0000                                    .. 
 
 
16:05:30.287017 2003::3.32769 > 2004::2.traceroute: [udp sum ok] udp 16 (len 24, hlim 2) 
0x0000  6000 0000 0018 1102 2003 0000 0000 0000 `............... 
0x0010  0000 0000 0000 0003 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 8001 829a 0018 7cd7 ..............|. 
0x0030  0000 07b3 0000 0002 b12f b540 d019 0200 ........./.@.... 
 
 
16:05:30.287582 2004::2 > 2003::3: [|icmp6] (len 72, hlim 63) 
0x0000  6000 0000 0048 3a3f 2004 0000 0000 0000 `....H:?........ 
0x0010  0000 0000 0000 0002 2003 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0003 0104 7f9e 0000 0000 ................ 
0x0030  6000 0000 0018 1101 2003 0000 0000 0000 `............... 
0x0040  0000 0000 0000 0003 2004 0000 0000 0000 ................ 
0x0050  0000                                    .. 
 
 
16:05:35.285973 fe80::2c0:a8ff:fe88:887d > 2003::1: icmp6: neighbor sol: who has 
2003::1(src lladdr: 00:c0:a8:88:88:7d) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff fe80 0000 0000 0000 `.....:......... 
0x0010  02c0 a8ff fe88 887d 2003 0000 0000 0000 .......}........ 
0x0020  0000 0000 0000 0001 8700 d48e 0000 0000 ................ 
0x0030  2003 0000 0000 0000 0000 0000 0000 0001 ................ 
0x0040  0101 00c0 a888 887d                     .......} 
 
 
16:05:35.286097 2003::1 > fe80::2c0:a8ff:fe88:887d: icmp6: neighbor adv: tgt is 
2003::1(RS) (len 24, hlim 255) 
0x0000  6000 0000 0018 3aff 2003 0000 0000 0000 `.....:......... 
0x0010  0000 0000 0000 0001 fe80 0000 0000 0000 ................ 
0x0020  02c0 a8ff fe88 887d 8800 465d c000 0000 .......}..F].... 
0x0030  2003 0000 0000 0000 0000 0000 0000 0001 ................ 
 
 
16:05:40.286260 fe80::2c0:a8ff:fe88:89f2 > fe80::2c0:a8ff:fe88:887d: icmp6: neighbor sol: 
who has fe80::2c0:a8ff:fe88:887d(src lladdr: 00:c0:a8:88:89:f2) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff fe80 0000 0000 0000 `.....:......... 
0x0010  02c0 a8ff fe88 89f2 fe80 0000 0000 0000 ................ 
0x0020  02c0 a8ff fe88 887d 8700 af1e 0000 0000 .......}........ 
0x0030  fe80 0000 0000 0000 02c0 a8ff fe88 887d ...............} 
0x0040  0101 00c0 a888 89f2                     ........ 
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16:05:40.286344 fe80::2c0:a8ff:fe88:887d > fe80::2c0:a8ff:fe88:89f2: icmp6: neighbor adv: 
tgt is fe80::2c0:a8ff:fe88:887d(SO)(tgt lladdr: 00:c0:a8:88:88:7d) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff fe80 0000 0000 0000 `.....:......... 
0x0010  02c0 a8ff fe88 887d fe80 0000 0000 0000 .......}........ 
0x0020  02c0 a8ff fe88 89f2 8800 4e93 6000 0000 ..........N.`... 
0x0030  fe80 0000 0000 0000 02c0 a8ff fe88 887d ...............} 
0x0040  0201 00c0 a888 887d                     .......} 
 
 

TRACEROUTE6 – TPE – ETH1 

This tcpdump output shows the packet sequence as seen 

by the eth1 interface of the TPE. The importance of this 

sequence is that a traceroute6 UDP sequence from the client 

was translated to appear as if it came from 2004::1.  The 

translated packet was successfully communicated to 2004::2 

and the resulting replies were received by 2004::1. Note 

that the address of the client is now masked by the NAT 

mechanism. The following command was issued by the client 

to produce this result: 

# traceroute6 2004::2 

 

16:05:30.287211 2004::1 > ff02::1:ff00:2: icmp6: neighbor sol: who has 2004::2(src 
lladdr: 00:c0:a8:88:87:6c) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff 2004 0000 0000 0000 `.....:......... 
0x0010  0000 0000 0000 0001 ff02 0000 0000 0000 ................ 
0x0020  0000 0001 ff00 0002 8700 08dd 0000 0000 ................ 
0x0030  2004 0000 0000 0000 0000 0000 0000 0002 ................ 
0x0040  0101 00c0 a888 876c                     .......l 
 
 
16:05:30.287315 2004::2 > 2004::1: icmp6: neighbor adv: tgt is 2004::2(SO)(tgt lladdr: 
00:0d:56:ae:a5:00) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff 2004 0000 0000 0000 `.....:......... 
0x0010  0000 0000 0000 0002 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0001 8800 b9d6 6000 0000 ............`... 
0x0030  2004 0000 0000 0000 0000 0000 0000 0002 ................ 
0x0040  0201 000d 56ae a500                     ....V... 
 
 
16:05:30.287382 2004::1.32769 > 2004::2.traceroute: [udp sum ok] udp 16 [hlim 1] (len 24) 
0x0000  6000 0000 0018 1101 2004 0000 0000 0000 `............... 
0x0010  0000 0000 0000 0001 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0002 8001 829a 0018 7cd8 ..............|. 
0x0030  0000 07b3 0000 0002 b12f b540 d019 0200 ........./.@.... 
 
 
16:05:30.287463 2004::2 > 2004::1: [|icmp6] (len 72, hlim 64) 
0x0000  6000 0000 0048 3a40 2004 0000 0000 0000 `....H:@........ 
0x0010  0000 0000 0000 0002 2004 0000 0000 0000 ................ 
0x0020  0000 0000 0000 0001 0104 4d7e 0000 0000 ..........M~.... 
0x0030  6000 0000 0018 1101 2004 0000 0000 0000 `............... 
0x0040  0000 0000 0000 0001 2004 0000 0000 0000 ................ 
0x0050  0000                                    .. 
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16:05:35.281776 fe80::20d:56ff:feae:a500 > 2004::1: icmp6: neighbor sol: who has 
2004::1(src lladdr: 00:0d:56:ae:a5:00) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff fe80 0000 0000 0000 `.....:......... 
0x0010  020d 56ff feae a500 2004 0000 0000 0000 ..V............. 
0x0020  0000 0000 0000 0001 8700 40a1 0000 0000 ..........@..... 
0x0030  2004 0000 0000 0000 0000 0000 0000 0001 ................ 
0x0040  0101 000d 56ae a500                     ....V... 
 
 
16:05:35.281924 2004::1 > fe80::20d:56ff:feae:a500: icmp6: neighbor adv: tgt is 
2004::1(RS) (len 24, hlim 255) 
0x0000  6000 0000 0018 3aff 2004 0000 0000 0000 `.....:......... 
0x0010  0000 0000 0000 0001 fe80 0000 0000 0000 ................ 
0x0020  020d 56ff feae a500 8800 7c65 c000 0000 ..V.......|e.... 
0x0030  2004 0000 0000 0000 0000 0000 0000 0001 ................ 
 
 
16:05:40.281290 fe80::2c0:a8ff:fe88:876c > fe80::20d:56ff:feae:a500: icmp6: neighbor sol: 
who has fe80::20d:56ff:feae:a500(src lladdr: 00:c0:a8:88:87:6c) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff fe80 0000 0000 0000 `.....:......... 
0x0010  02c0 a8ff fe88 876c fe80 0000 0000 0000 .......l........ 
0x0020  020d 56ff feae a500 8700 203f 0000 0000 ..V........?.... 
0x0030  fe80 0000 0000 0000 020d 56ff feae a500 ..........V..... 
0x0040  0101 00c0 a888 876c                     .......l 
 
 
16:05:40.281387 fe80::20d:56ff:feae:a500 > fe80::2c0:a8ff:fe88:876c: icmp6: neighbor adv: 
tgt is fe80::20d:56ff:feae:a500(SO)(tgt lladdr: 00:0d:56:ae:a5:00) (len 32, hlim 255) 
0x0000  6000 0000 0020 3aff fe80 0000 0000 0000 `.....:......... 
0x0010  020d 56ff feae a500 fe80 0000 0000 0000 ..V............. 
0x0020  02c0 a8ff fe88 876c 8800 f337 6000 0000 .......l...7`... 
0x0030  fe80 0000 0000 0000 020d 56ff feae a500 ..........V..... 
0x0040  0201 000d 56ae a500                     ....V... 
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APPENDIX E. USER MANUAL 

This appendix contains the man page for ip6tables that 

has been modified to include use instructions for this NAT 

development for IPv6. The NAT description is based on the 

original NAT description in the man page for iptables and 

is highlighted with preceeding “***” below. 

 
NAME 
ip6tables - IPv6 packet filter administration and NAT.   
 
SYNOPSIS 
ip6tables [-t table] -[AD] chain rule-specification [options]  
ip6tables [-t table] -I chain [rulenum] rule-specification [options]  
ip6tables [-t table] -R chain rulenum rule-specification [options]  
ip6tables [-t table] -D chain rulenum [options]  
ip6tables [-t table] -[LFZ] [chain] [options]  
ip6tables [-t table] -N chain  
ip6tables [-t table] -X [chain]  
ip6tables [-t table] -P chain target [options]  
ip6tables [-t table] -E old-chain-name new-chain-name    
 
DESCRIPTION 
Ip6tables is used to set up, maintain, and inspect the tables of IPv6 
packet filter rules in the Linux kernel. Several different tables may 
be defined. Each table contains a number of built-in chains and may 
also contain user-defined chains.  
Each chain is a list of rules which can match a set of packets. Each 
rule specifies what to do with a packet that matches. This is called a 
`target', which may be a jump to a user-defined chain in the same 
table.  
   
TARGETS 
A firewall rule specifies criteria for a packet, and a target. If the 
packet does not match, the next rule in the chain is the examined; if 
it does match, then the next rule is specified by the value of the 
target, which can be the name of a user-defined chain or one of the 
special values ACCEPT, DROP, QUEUE, or RETURN.  
ACCEPT means to let the packet through. DROP means to drop the packet 
on the floor. QUEUE means to pass the packet to userspace (if supported 
by the kernel). RETURN means stop traversing this chain and resume at 
the next rule in the previous (calling) chain. If the end of a built-in 
chain is reached or a rule in a built-in chain with target RETURN is 
matched, the target specified by the chain policy determines the fate 
of the packet.    
 
TABLES 
There are currently two independent tables (which tables are present at 
any time depends on the kernel configuration options and which modules 
are present), as nat table has not been implemented yet.  
 



222 

-t, --table table  
This option specifies the packet matching table which the command 
should operate on. If the kernel is configured with automatic module 
loading, an attempt will be made to load the appropriate module for 
that table if it is not already there.  
The tables are as follows:  
 
filter:  
This is the default table (if no -t option is passed). It contains the 
built-in chains INPUT (for packets coming into the box itself), FORWARD 
(for packets being routed through the box), and OUTPUT (for locally-
generated packets).  
 
*** nat: 
This table is consulted when a packet that creates a new connection is 
encountered.  It consists of three built-ins: PREROUTING (for altering 
packets as soon as they come in), OUTPUT (for altering locally-
generated packets before routing), and POSTROUTING (for altering 
packets as they are about to go out. 
 
mangle:  
This table is used for specialized packet alteration. Until kernel 
2.4.17 it had two built-in chains: PREROUTING (for altering incoming 
packets before routing) and OUTPUT (for altering locally-generated 
packets before routing). Since kernel 2.4.18, three other built-in 
chains are also supported: INPUT (for packets coming into the box 
itself), FORWARD (for altering packets being routed through the box), 
and POSTROUTING (for altering packets as they are about to go out).  
   
OPTIONS 
The options that are recognized by ip6tables can be divided into 
several different groups.    
 
COMMANDS 
These options specify the specific action to perform. Only one of them 
can be specified on the command line unless otherwise specified below. 
For all the long versions of the command and option names, you need to 
use only enough letters to ensure that ip6tables can differentiate it 
from all other options.  
 
-A, --append chain rule-specification  
Append one or more rules to the end of the selected chain. When the 
source and/or destination names resolve to more than one address, a 
rule will be added for each possible address combination.  
 
-D, --delete chain rule-specification  
-D, --delete chain rulenum  
Delete one or more rules from the selected chain. There are two 
versions of this command: the rule can be specified as a number in the 
chain (starting at 1 for the first rule) or a rule to match.  
 
-I, --insert  
Insert one or more rules in the selected chain as the given rule 
number. So, if the rule number is 1, the rule or rules are inserted at 
the head of the chain. This is also the default if no rule number is 
specified.  
 



223 

-R, --replace chain rulenum rule-specification  
Replace a rule in the selected chain. If the source and/or destination 
names resolve to multiple addresses, the command will fail. Rules are 
numbered starting at 1.  
 
-L, --list [chain]  
List all rules in the selected chain. If no chain is selected, all 
chains are listed. As every other iptables command, it applies to the 
specified table (filter is the default), so mangle rules get listed by  
 ip6tables -t mangle -n -L 
Please note that it is often used with the -n option, in order to avoid 
long reverse DNS lookups. It is legal to specify the -Z (zero) option 
as well, in which case the chain(s) will be atomically listed and 
zeroed. The exact output is affected by the other arguments given. The 
exact rules are suppressed until you use  
 ip6tables -L –v 
 
-F, --flush [chain]  
Flush the selected chain (all the chains in the table if none is 
given). This is equivalent to deleting all the rules one by one.  
 
-Z, --zero [chain]  
Zero the packet and byte counters in all chains. It is legal to specify 
the -L, --list (list) option as well, to see the counters immediately 
before they are cleared. (See above.)  
 
-N, --new-chain chain  
Create a new user-defined chain by the given name. There must be no 
target of that name already.  
 
-X, --delete-chain [chain]  
Delete the optional user-defined chain specified. There must be no 
references to the chain. If there are, you must delete or replace the 
referring rules before the chain can be deleted. If no argument is 
given, it will attempt to delete every non-builtin chain in the table.  
 
-P, --policy chain target  
Set the policy for the chain to the given target. See the section 
TARGETS for the legal targets. Only built-in (non-user-defined) chains 
can have policies, and neither built-in nor user-defined chains can be 
policy targets.  
 
-E, --rename-chain old-chain new-chain  
Rename the user specified chain to the user supplied name. This is 
cosmetic, and has no effect on the structure of the table.  
-h  
Help. Give a (currently very brief) description of the command syntax.  
   
PARAMETERS 
The following parameters make up a rule specification (as used in the 
add, delete, insert, replace and append commands).  
 
-p, --protocol [!] protocol  
The protocol of the rule or of the packet to check. The specified 
protocol can be one of tcp, udp, ipv6-icmp|icmpv6, or all, or it can be 
a numeric value, representing one of these protocols or a different 
one. A protocol name from /etc/protocols is also allowed. A "!" 
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argument before the protocol inverts the test. The number zero is 
equivalent to all. Protocol all will match with all protocols and is 
taken as default when this option is omitted.  
 
-s, --source [!] address[/mask]  
Source specification. Address can be either a hostname (please note 
that specifying any name to be resolved with a remote query such as DNS 
is a really bad idea), a network IPv6 address (with /mask), or a plain 
IPv6 address. (the network name isn't supported now). The mask can be 
either a network mask or a plain number, specifying the number of 1's 
at the left side of the network mask. Thus, a mask of 64 is equivalent 
to ffff:ffff:ffff:ffff:0000:0000:0000:0000. A "!" argument before the 
address specification inverts the sense of the address. The flag --src 
is an alias for this option.  
 
-d, --destination [!] address[/mask]  
Destination specification. See the description of the -s (source) flag 
for a detailed description of the syntax. The flag --dst is an alias 
for this option.  
 
-j, --jump target  
This specifies the target of the rule; i.e., what to do if the packet 
matches it. The target can be a user-defined chain (other than the one 
this rule is in), one of the special builtin targets which decide the 
fate of the packet immediately, or an extension (see EXTENSIONS below). 
If this option is omitted in a rule, then matching the rule will have 
no effect on the packet's fate, but the counters on the rule will be 
incremented.  
 
-i, --in-interface [!] name  
Name of an interface via which a packet is going to be received (only 
for packets entering the INPUT, FORWARD and PREROUTING chains). When 
the "!" argument is used before the interface name, the sense is 
inverted. If the interface name ends in a "+", then any interface which 
begins with this name will match. If this option is omitted, any 
interface name will match.  
 
-o, --out-interface [!] name  
Name of an interface via which a packet is going to be sent (for 
packets entering the FORWARD and OUTPUT chains). When the "!" argument 
is used before the interface name, the sense is inverted. If the 
interface name ends in a "+", then any interface which begins with this 
name will match. If this option is omitted, any interface name will 
match.  
 
-c, --set-counters PKTS BYTES This enables the administrator to 
initialize the packet and byte counters of a rule (during INSERT, 
APPEND, REPLACE operations).  
   
OTHER OPTIONS 
The following additional options can be specified:  
 
-v, --verbose  
Verbose output. This option makes the list command show the interface 
name, the rule options (if any), and the TOS masks. The packet and byte 
counters are also listed, with the suffix 'K', 'M' or 'G' for 1000, 
1,000,000 and 1,000,000,000 multipliers respectively (but see the -x 



225 

flag to change this). For appending, insertion, deletion and 
replacement, this causes detailed information on the rule or rules to 
be printed.  
 
-n, --numeric  
Numeric output. IP addresses and port numbers will be printed in 
numeric format. By default, the program will try to display them as 
host names, network names, or services (whenever applicable).  
 
-x, --exact  
Expand numbers. Display the exact value of the packet and byte 
counters, instead of only the rounded number in K's (multiples of 1000) 
M's (multiples of 1000K) or G's (multiples of 1000M). This option is 
only relevant for the -L command.  
 
--line-numbers  
When listing rules, add line numbers to the beginning of each rule, 
corresponding to that rule's position in the chain.  
 
--modprobe=command  
When adding or inserting rules into a chain, use command to load any 
necessary modules (targets, match extensions, etc).  
   
MATCH EXTENSIONS 
ip6tables can use extended packet matching modules. These are loaded in 
two ways: implicitly, when -p or --protocol is specified, or with the -
m or --match options, followed by the matching module name; after 
these, various extra command line options become available, depending 
on the specific module. You can specify multiple extended match modules 
in one line, and you can use the -h or --help options after the module 
has been specified to receive help specific to that module.  
The following are included in the base package, and most of these can 
be preceded by a ! to invert the sense of the match.    
tcp 
These extensions are loaded if `--protocol tcp' is specified. It 
provides the following options:  
 
--source-port [!] port[:port]  
Source port or port range specification. This can either be a service 
name or a port number. An inclusive range can also be specified, using 
the format port:port. If the first port is omitted, "0" is assumed; if 
the last is omitted, "65535" is assumed. If the second port greater 
then the first they will be swapped. The flag --sport is a convenient 
alias for this option.  
 
--destination-port [!] port[:port]  
Destination port or port range specification. The flag --dport is a 
convenient alias for this option.  
 
--tcp-flags [!] mask comp  
Match when the TCP flags are as specified. The first argument is the 
flags which we should examine, written as a comma-separated list, and 
the second argument is a comma-separated list of flags which must be 
set. Flags are: SYN ACK FIN RST URG PSH ALL NONE. Hence the command  
 ip6tables -A FORWARD -p tcp --tcp-flags SYN,ACK,FIN,RST SYN 
will only match packets with the SYN flag set, and the ACK, FIN and RST 
flags unset.  
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[!] --syn  
Only match TCP packets with the SYN bit set and the ACK and RST bits 
cleared. Such packets are used to request TCP connection initiation; 
for example, blocking such packets coming in an interface will prevent 
incoming TCP connections, but outgoing TCP connections will be 
unaffected. It is equivalent to --tcp-flags SYN,RST,ACK SYN. If the "!" 
flag precedes the "--syn", the sense of the option is inverted.  
 
--tcp-option [!] number  
Match if TCP option set.  
   
udp 
These extensions are loaded if `--protocol udp' is specified. It 
provides the following options:  
 
--source-port [!] port[:port]  
Source port or port range specification. See the description of the --
source-port option of the TCP extension for details.  
 
--destination-port [!] port[:port]  
Destination port or port range specification. See the description of 
the --destination-port option of the TCP extension for details.  
   
ipv6-icmp 
This extension is loaded if `--protocol ipv6-icmp' or `--protocol 
icmpv6' is specified. It provides the following option:  
 
--icmpv6-type [!] typename  
This allows specification of the ICMP type, which can be a numeric 
IPv6-ICMP type, or one of the IPv6-ICMP type names shown by the command  
 ip6tables -p ipv6-icmp -h 
   
mac 
--mac-source [!] address  
Match source MAC address. It must be of the form XX:XX:XX:XX:XX:XX. 
Note that this only makes sense for packets coming from an Ethernet 
device and entering the PREROUTING, FORWARD or INPUT chains.  
   
limit 
This module matches at a limited rate using a token bucket filter. A 
rule using this extension will match until this limit is reached 
(unless the `!' flag is used). It can be used in combination with the 
LOG target to give limited logging, for example.  
 
--limit rate  
Maximum average matching rate: specified as a number, with an optional 
`/second', `/minute', `/hour', or `/day' suffix; the default is 3/hour.  
--limit-burst number  
Maximum initial number of packets to match: this number gets recharged 
by one every time the limit specified above is not reached, up to this 
number; the default is 5.  
   
multiport 
This module matches a set of source or destination ports. Up to 15 
ports can be specified. It can only be used in conjunction with -p tcp 
or -p udp.  
--source-ports port[,port[,port...]]  



227 

Match if the source port is one of the given ports. The flag --sports 
is a convenient alias for this option.  
--destination-ports port[,port[,port...]]  
Match if the destination port is one of the given ports. The flag --
dports is a convenient alias for this option.  
--ports port[,port[,port...]]  
Match if the both the source and destination ports are equal to each 
other and to one of the given ports.  
   
mark 
This module matches the netfilter mark field associated with a packet 
(which can be set using the MARK target below).  
--mark value[/mask]  
Matches packets with the given unsigned mark value (if a mask is 
specified, this is logically ANDed with the mask before the 
comparison).  
   
owner 
This module attempts to match various characteristics of the packet 
creator, for locally-generated packets. It is only valid in the OUTPUT 
chain, and even this some packets (such as ICMP ping responses) may 
have no owner, and hence never match. This is regarded as experimental.  
--uid-owner userid  
Matches if the packet was created by a process with the given effective 
user id.  
--gid-owner groupid  
Matches if the packet was created by a process with the given effective 
group id.  
--pid-owner processid  
Matches if the packet was created by a process with the given process 
id.  
--sid-owner sessionid  
Matches if the packet was created by a process in the given session 
group.  
   
TARGET EXTENSIONS 
ip6tables can use extended target modules: the following are included 
in the standard distribution.    
LOG 
Turn on kernel logging of matching packets. When this option is set for 
a rule, the Linux kernel will print some information on all matching 
packets (like most IPv6 IPv6-header fields) via the kernel log (where 
it can be read with dmesg or syslogd(8)). This is a "non-terminating 
target", i.e. rule traversal continues at the next rule. So if you want 
to LOG the packets you refuse, use two separate rules with the same 
matching criteria, first using target LOG then DROP (or REJECT).  
--log-level level  
Level of logging (numeric or see syslog.conf(5)).  
--log-prefix prefix  
Prefix log messages with the specified prefix; up to 29 letters long, 
and useful for distinguishing messages in the logs.  
--log-tcp-sequence  
Log TCP sequence numbers. This is a security risk if the log is 
readable by users.  
--log-tcp-options  
Log options from the TCP packet header.  
--log-ip-options  
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Log options from the IPv6 packet header.  
   
MARK 
This is used to set the netfilter mark value associated with the 
packet. It is only valid in the mangle table.  
--set-mark mark  
   
REJECT 
This is used to send back an error packet in response to the matched 
packet: otherwise it is equivalent to DROP so it is a terminating 
TARGET, ending rule traversal. This target is only valid in the INPUT, 
FORWARD and OUTPUT chains, and user-defined chains which are only 
called from those chains. The following option controls the nature of 
the error packet returned:  
--reject-with type  
The type given can be  
 icmp6-no-route 
 no-route 
 icmp6-adm-prohibited 
 adm-prohibited 
 icmp6-addr-unreachable 
 addr-unreach 
 icmp6-port-unreachable 
 port-unreach 
which return the appropriate IPv6-ICMP error message (port-unreach is 
the default). Finally, the option tcp-reset can be used on rules which 
only match the TCP protocol: this causes a TCP RST packet to be sent 
back. This is mainly useful for blocking ident (113/tcp) probes which 
frequently occur when sending mail to broken mail hosts (which won't 
accept your mail otherwise).  
   
 
*** SNAT 
This target is only valid in the nat table, in the 
POSTROUTING chain.  It specifies that the source address of the packet 
should be modified (and all future packets in this connection will also 
be mangled), and rules should cease being examined.  It takes one type 
of option: 
 
     --to-source  ipaddr 
 
which can specify a single new source IP address.   
 
 
DIAGNOSTICS 
Various error messages are printed to standard error. The exit code is 
0 for correct functioning. Errors which appear to be caused by invalid 
or abused command line parameters cause an exit code of 2, and other 
errors cause an exit code of 1.    
BUGS 
Bugs? What's this? ;-) Well... the counters are not reliable on 
sparc64.    
 
COMPATIBILITY WITH IPCHAINS 
This ip6tables is very similar to ipchains by Rusty Russell. The main 
difference is that the chains INPUT and OUTPUT are only traversed for 
packets coming into the local host and originating from the local host 
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respectively. Hence every packet only passes through one of the three 
chains (except loopback traffic, which involves both INPUT and OUTPUT 
chains); previously a forwarded packet would pass through all three.  
The other main difference is that -i refers to the input interface; -o 
refers to the output interface, and both are available for packets 
entering the FORWARD chain. There are several other changes in 
ip6tables.    
 
SEE ALSO 
ip6tables-save(8), ip6tables-restore(8), iptables(8), iptables-save(8), 
iptables-restore(8). The packet-filtering-HOWTO details iptables usage 
for packet filtering, the NAT-HOWTO details NAT, the netfilter-
extensions-HOWTO details the extensions that are not in the standard 
distribution, and the netfilter-hacking-HOWTO details the netfilter 
internals.  
See http://www.netfilter.org/.    
AUTHORS 
Rusty Russell wrote iptables, in early consultation with Michael 
Neuling.  
Marc Boucher made Rusty abandon ipnatctl by lobbying for a generic 
packet selection framework in iptables, then wrote the mangle table, 
the owner match, the mark stuff, and ran around doing cool stuff 
everywhere.  
James Morris wrote the TOS target, and tos match.  
Jozsef Kadlecsik wrote the REJECT target.  
Harald Welte wrote the ULOG target, TTL match+target and libipulog.  
The Netfilter Core Team is: Marc Boucher, Martin Josefsson, Jozsef 
Kadlecsik, James Morris, Harald Welte and Rusty Russell.  
ip6tables man page created by Andras Kis-Szabo, based on iptables man 
page written by Herve Eychenne 
<rv@wallfire.org>.  
*** ip6tables man page was modified by Trevor J. Baumgartner and 
Matthew D. W. Phillips to reflect added NAT functionality. 
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APPENDIX F. COMMON CRITERIA 

This appendix contains a summary of the requirements 

necessary for an EAL5 certification. A listing of the 

requirements can be found in the following table. 

 
Table 4.   EAL5 Requirements 

 
1. CONFIGURATION MANAGEMENT AUTOMATION 

1.1 Partial CM Automation (ACM_AUT.1) 

This component requires that the developer use and 

provide a CM plan. In addition, the CM system must provide 

an automated method through which only authorized changes 
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are made to the TOE. The CM must also support the 

generation of the TOE. Finally, the CM plan must describe 

the automated tools used in the CM system and how the tools 

are used. [CC] 

2. CONFIGURATION MANAGEMENT CAPABILITIES 

2.1 Generation Support and Acceptance Procedures 
(ACM_CAP.4) 

This component states that the developer must provide 

a reference for the TOE, use a CM system and provide CM 

documentation. In addition, the reference for the TOE must 

be unique to each version of the TOE and be labeled as 

such. The CM documentation must also include a 

configuration list, a CM plan and an acceptance plan. 

Within the configuration list, all configuration items that 

compromise the TOE must be uniquely identified and 

described. The CM system must also provide measures to 

ensure that only authorized changes are made to the 

configuration items, as well as support the generation of 

the TOE. [CC] 

3. CONFIGURATION MANAGEMENT SCOPE 

3.1 Development Tools CM Coverage (ACM_SCP.3)  

This component requires the developer to provide a 

list of configuration management items for the TOE. This 

list must include implementation representation, security 

flaws, development tools and evaluation evidence required 

by the assurance components in the ST. [CC] 

4. DELIVERY 

4.1 Detection of Modification (ADO_DEL.2)  

The developer must document and use procedures for 

delivery of the TOE or parts of it to the user. The 

documentation must describe all the procedures necessary to 

maintain security when distributing versions of the TOE to 
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a user’s site. The documentation must also describe how the 

various procedures and technical measures provide for the 

detection of modifications, or any discrepancy between the 

developer’s master copy and the version received at the 

user’s site. [CC] 

5. INSTALLATION, GENERATION AND START-UP 

5.1 Installation, Generation, and Start-up Procedures 
(ADO_IGS.1)  

This component requires the developer to document the 

procedures necessary for the secure installation, 

generation, and start-up of the TOE. [CC] 

6. FUNCTIONAL SPECIFICATION 

6.1 Semiformal Functional Specification (ADV_FSP.3)  

This component states that the developer must provide 

a functional specification. The specification should 

describe the TSF using a semiformal style, supported by 

informal, explanatory text where appropriate. This 

specification must be internally consistent as well as 

completely represent the TSF. [CC] 

7. HIGH-LEVEL DESIGN 

7.1 Semiformal High-Level Design (ADV_HLD.3)  

The high-level design requirements for developer 

action states that the developer must provide the high-

level design of the TSF. This design should be semiformal 

and internally consistent. The design must also describe 

the structure of the TSF in terms of subsystems and the 

secure functionality provided within each subsystem. The 

high-level design should, in addition, identify any 

hardware, firmware or software required by the TSF and any 

underlying protection mechanisms. [CC] 
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8. IMPLEMENTATION REPRESENTATION 

8.1 Implementation of the TSF (ADV_IMP.2) 

The primary requirement for this component is for the 

developer to provide the implementation representation for 

the entire TSF. This representation must unambiguously 

define the TSF so that one would be able to recreate the 

implementation without making any design decisions. The 

representation should be internally consistent and describe 

the relationships between all portions of the 

implementation. [CC] 

9. TSF INTERNALS 

9.1 Modularity (ADV_INT.1) 

This component states that the developer must design 

and structure the TSF in a modular fashion that avoids 

unnecessary interactions between the modules of the design. 

The developer must also provide an architectural 

description. The description must identify the modules of 

the TSF, describe the purpose of each module and describe 

how the TSF design provides for largely independent modules 

that avoid unnecessary interactions. [CC] 

10. LOW-LEVEL DESIGN 

10.1 Descriptive Low-Level Design (ADV_LLD.1)  

This component requires the developer to provide an 

informal, low-level design of the TSF. This design must be 

internally consistent, describe the TSF in terms of 

modules, and describe the purpose of each module and its 

relationship between other modules. This design must 

identify all interfaces to the modules of the TSF and which 

modules are externally visible. The design must also 

describe the purpose and method of use for all modules 

within the TSF. [CC] 
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11. REPRESENTATION CORRESPONDENCE 

11.1 Semiformal Correspondence Demonstration 
(ADV_RCR.2)  

This requirement states that the developer must 

provide an analysis of correspondence between all adjacent 

pairs of TSF representations that are provided. These 

representations must demonstrate that all relevant security 

functionality is correctly and completely refined in the 

less abstract TSF representation. Also, a demonstration of 

correspondence between semiformal representations is 

required. [CC] 

12. SECURITY POLICY MODELING 

12.1 Formal TOE Security Policy Model (ADV_SPM.3) 

The primary requirement for this component is for the 

developer to provide a formal TSP model. The developer must 

demonstrate correspondence between the functional 

specification and the TSP model. The TSP model must 

describe the rules and characteristics of all policies of 

the TSP that can be modeled. It must also include a 

demonstration of consistency and completeness with regards 

to all policies of the TSP. [CC] 

13. ADMINISTRATOR GUIDANCE 

13.1 Administrator Guidance (AGD_ADM.1)  

This component requires the developer to provide 

administrator guidance addressed to system administrative 

personnel. The guidance should describe the administrative 

functions of the TOE and must be consistent with all other 

documentation supplied for evaluation. This guidance must 

also describe how to administer the TOE in a secure manner. 

[CC] 
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14. USER GUIDANCE 

14.1 User Guidance (AGD_USR.1)  

The primary requirement for this component is that 

user guidance be provided. This guidance must describe the 

functions and interfaces available to the non-

administrative users of the TOE. It must also describe the 

use of user-accessible security functions provided by the 

TOE as well as any warnings that might occur. In addition 

the guidance must be consistent with all other 

documentation supplied for evaluation. [CC] 

15. DEVELOPMENT SECURITY 

15.1 Identification of Security Measures (ALC_DVS.1)  

This component requires the developer to produce 

development security documentation. This documentation must 

describe all the physical, procedural, personnel and other 

security measures necessary to protect the confidentiality 

and integrity of the TOE design and implementation in its 

development environment. In addition, the documentation 

must also provide evidence that these security measures are 

followed during the development and maintenance of the TOE. 

[CC] 

16. LIFE CYCLE DEFINITION 

16.1 Standardized Life-Cycle Model (ALC_LCD.2)  

The developer must establish and use a standardized 

life-cycle model to be used in the development and 

maintenance of the TOE. This life-cycle model 

implementation must also have corresponding documentation. 

This model must provide for the necessary control over the 

development and maintenance of the TOE. The life-cycle 

definition documentation must explain why the model was 

chosen and how it was used during development. [CC] 
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17. TOOLS AND TECHNIQUES 

17.1 Compliance with Implementation Standards 
(ALC_TAT.2) 

This component states that the developer must identify 

the development tools being used for the TOE. In addition, 

the implementation-dependent options of the development 

tools must be documented. Also, the development tools used 

in the implementation must be well defined. [CC] 

18. COVERAGE 

18.1 Analysis of Coverage (ATE_COV.2)  

This component requires the developer to provide an 

analysis of the test coverage. The analysis must 

demonstrate the correspondence between the tests identified 

in the test documentation and the TSF as described in the 

functional specification. Also, the tests identified in the 

test documentation must be complete. [CC] 

19. DEPTH 

19.1 Testing: Low-Level Design (ATE_COV.2)  

This component requires the developer to provide an 

analysis of the depth of testing. This analysis must 

demonstrate that the tests identified in the test 

documentation are sufficient to demonstrate that the TSF 

operates in accordance with its high and low level design. 

[CC] 

20. FUNCTIONAL TESTS 

20.1 Functional Testing (ATE_FUN.1) 

This component requires the developer to test the TSF 

and document the results and provide test documentation. 

The documentation should consist of test plans, test 

procedure descriptions and actual test results. The testing 

procedure descriptions must identify the tests to be 

performed and describe the testing scenarios for testing 
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each security function. The test results should demonstrate 

that each tested security function behaved as expected. 

[CC] 

21. INDEPENDENT TESTING 

21.1 Independent Testing - Sample (ATE_IND.2)  

This component requires the developer to provide a 

suitable TOE for testing. The developer must also provide 

an equivalent set of resources to those that were used in 

the developer’s functional testing of the TSF. [CC] 

22. COVERT CHANNEL ANALYSIS 

22.2 Covert Channel Analysis (AVA_CCA.1)  

This component requires the developer to conduct a 

search for covert channels for each information flow 

control policy and provide analysis documentation. The 

documentation must identify covert channels and estimate 

their capacity. It must also describe the procedures used 

for determining the existence of covert channels. The 

documentation must also describe all assumptions made 

during the analysis as well as the method used for 

estimating channel capacity. It must also describe the 

worst case exploitation scenario for each identified covert 

channel. [CC] 

23. MISUSE 

23.3 Validation of Analysis (AVA_MSU.2)  

This component requires the developer to provide 

guidance documentation as well as a document of the 

analysis of it. The guidance document must identify all 

possible modes of operation of the TOE, their consequences 

and implications for maintaining secure operation. The 

guidance document must list all assumptions about the 

intended environment as well as requirements for external 

security measures. [CC] 
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24. STRENGTH OF TOE SECURITY FUNCTIONS 

24.1 Strength of TOE Security Function Evaluation 
(AVA_SOF.1)  

This component requires the developer to perform a 

strength of TOE security function analysis for each 

mechanism identified in the ST as having a strength of TOE 

security function claim. Also, for each mechanism with a 

strength of TOE security function claim, the strength of 

the TOE security function analysis must show that it meets 

or exceeds the minimum strength level and the specific 

strength of function metric defined in the PP/ST. [CC] 

25. VULNERABILITY ANALYSIS 

25.1 Moderately Resistant (AVA_VLA.3)  

This component requires the developer to perform a 

vulnerability analysis and provide documentation. This 

documentation must describe the analysis of the TOE 

deliverables performed to search for ways in which a user 

can violate the TSP. It must also describe the disposition 

of the identified vulnerabilities. Also, it must show that 

these vulnerabilities cannot be exploited in the specified 

environment for the TOE. In addition, the documentation 

must justify that the TOE is resistant to obvious 

penetration attacks. [CC] 
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APPENDIX G. INSTALLATION GUIDE 

This document is intended to guide the installation 

and setup of the modified 2.6.5 Linux kernel that supports 

NAT for IPv6.  It also describes procedures for setting up 

the networking configurations for the TPE in order to run 

NAT.  Due to the myriad of situations that may be 

encountered, this document only describes the basic steps 

needed and does not cover extenuating circumstances brought 

about by other machines. 

 

1. Install Red Hat 9.0  
 
2. Boot into the Red Hat 9.0 kernel 
 
3. Verify network connectivity through an IPv4 ping 
 
4. Insert NAT kernel CD and, if necessary, mount the 

CD 
 
5. Copy the main tar file to /home: 
# cp /mnt/cdrom/IPV6NAT.COMPLETE.tar /home 
 
6. Remove the NAT kernel CD and, if necessary, 
unmount the CD 
 
7. Change directory to the /home directory and then 
unpack the main tar archive: 
# cd /home 
# tar xfv IPV6NAT.COMPLETE.tar 
 
8. This should produce three tar archives: 

- IPV6NAT.IPTABLES.tar ; contains the iptables 
user space code 
- IPV6NAT.MODUTILS.tar ; contains modutils 
necessary to compile 2.6 kernel. 

 - IPV6NAT.KERNEL.tar ; contains the main kernel 
 
9. Unpack the kernel archive: 
# tar xfv IPV6NAT.KERNEL.tar 
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The main kernel directory is: 
/home/usagi/kernel/linux26/ assuming you unpacked 
the archives in the /home directory. 

 
*If installation has been done previously, skip steps 
10 through 19. 
 
10. Unpack the modutils archive: 
# tar xfv IPV6NAT.MODUTILS.tar 
 
11. Change directory to the modutils folder: 
# cd module-init-tools-0.9.15-pre4 
 
12. Now modutils will be installed.  For a more 
detailed installation guide, read the INSTALL file in 
the modutils main directory.  The next step will be to 
configure the package for installation: 
# ./configure -–prefix=/ 
# make moveold 
 
13. Next run make clean and make: 
# make clean 
# make 
 
14. Then run make install: 
# make install 
# ./generate-modprobe.conf/etc/modprobe.conf 
 
15. Change directory back to /home:  
# cd ..  or cd /home 
 
16. Unpack the iptables tar package: 
# tar xfv IPV6NAT.IPTABLES.tar 
 
17. Change directory into the iptables folder: 
# cd iptables-1.2.9rc1 
 
18. Now iptables will be installed.  For a more 
detailed installation guide, read the INSTALL file in 
the modutils main directory.  Run make, telling it 
where the kernel is located: 
# make KERNEL_DIR=/home/usagi/kernel/linux26/ 
 
19. Run make install using the same information: 
# make install KERNEL_DIR=/home/usagi/kernel/linux26 
 
20. Change directory to the kernel directory: 
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# cd /home/usagi/kernel/linux26 
 
21. At this point the kernel needs configuration.  If 
installation done on a machine other than the TPE, the 
kernel will require reconfiguration.  In the current 
directory is the kernel configuration used on the 
development machine.  The configuration is named 
.config.  To configure the kernel using this 
configuration run: 
# make oldconfig 

This should answer all of the kernel option 
questions. 

 
22. To help generate the .config file on a different 
system: 
# cd /usr/src/linux-2.4.20.8 
# make mrproper 
# make oldconfig 

 
Answer all of the questions.  It is highly 
recommended that the user have a solid knowledge 
of kernel configuration before starting.  
Improper configuration can lead to serious 
problems. 
 

# cd /home/usagi/kernel/linux26/ 
# make mrproper 
# make oldconfig 
 
23. For platform specific questions, refer to the 
Linux 2.4.20.8 .config file. For configuration 
parameter that exist in both the Linux 2.4.20.8 and 
the Linux 2.6.5 .config files, use the Linux 2.6.5 
.config file for reference. For configuration 
parameters that do not exist in Linux 2.4, use the 
Linux 2.6.5 .config file for reference. When in doubt, 
deny experimental modules and unknown drivers. 
 
24. This step is only required if the kernel options 
are reconfigured and may be skipped if this is a TPE 
installation.  The following is a list of kernel 
configuration options that must be enabled for NAT to 
function properly: 
 Networking Support (NET) 
 Packet Socket (PACKET) 
 TCP/IP Networking (INET) 

IP6 tables support (IP6_NF_IPTABLES) 
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limit match support (IP6_NF_MATCH_LIMIT) 
MAC address match support (IP6_NF_MATCH_MAC) 
Routing header match support (IP6_NF_MATCH_RT) 
Hop-by-hop and Dst opts header match support  

(IP6_NF_MATCH_OPTS) 
Fragmentation header match support 

(IP6_NF_MATCH_FRAG) 
HL match support (IP6_ NF_MATCH_HL) 
Multiple port match support 

(IP6_NF_MATCH_MULTIPORT) 
Owner match support (IP6_NF_MATCH_OWNER) 
netfilter MARK match support (IP6_NF_MATCH_MARK) 
IPv6 Extension Headers Match 

(IP6_NF_MATCH_IPV6HEADER) 
AH/ESP match support (IP6_NF_MATCH_AHESP) 
Packet Length match support (IP6_NF_MATCH_LENGTH) 
EUI64 address check (IP6_NF_MATCH_EUI64) 
Connection tracking (IP6_NF_CONNTRACK) 
Connection state match support 

(IP6_NF_MATCH_STATE) 
Packet filtering (IP6_NF_FILTER) 
LOG target support (IP6_NF_TARGET_LOG) 
REJECT target support (IP6_NF_TARGET_LOG) 
Packet mangling (IP6_NF_MANGLE) 
HL target support (IP6_NF_TARGET_HL) 
MARK target support (IP6_NF_TARGET_MARK) 
IP6 range match support (IP6_NF_MATCH_IPRANGE) 
Full NAT (IP6_NF_NAT) 
NETMAP target support (IP6_NF_TARGET_NETMAP) 
SAME target support (IP6_NF_TARGET_SAME) 
NAT of local connections (IP6_NF_NAT_LOCAL) 

 Network Packet Filtering (NETFILTER) 
 Connection Tracking (IP_NF_CONNTRACK) 
 IP Tables Support (IP_NF_IPTABLES) 
 Limit match support (IP_NF_MATCH_IPRANGE) 
 MAC address match support (IP_NF_MATCH_MAC) 
 Packet type match support (IP_NF_MATCH_PKTTYPE) 
 Netfilter mark match support (IP_NF_MATCH_MARK) 
 Multiple port match support  

(IP_NF_MATCH MULTIPORT) 
 TOS match support (IP_NF_MATCH TOS) 
 Recent match support (IP_NF_MATCH RECENT) 
 Length match support (IP_NF_MATCH LENGTH) 
 TTL match support (IP_NF_MATCH_TTL) 

Connection state match support  
(IP_NF_MATCH_STATE) 

 Connection tracking match support  
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(IP_NFMATCH_CONNTRACK) 
Owner match support (IP_ NF_MATCH_OWNER) 

 Packet filtering (IP_NF_FILTER) 
 Full NAT (IP_NF_NAT) 
 MASQUERADE target support 

(IP_NF_TARGET_MASQUERADE) 
 REDIRECT target support (IP_NF_TARGET REDIRECT) 
 NETMAP target support (IP_NF_TARGET_NETMAP) 
 SAME target support (IP_NF_TARGET_SAME) 
 NAT of local connections (IP_NF_NAT_LOCAL) 

Packet mangling (IP_NF_MANGLE) 
 
25. Next step is to clear out already compiled object 
files: 
# make clean 
 
26. To add a specific tag to this compiled version of 
the kernel, bring up the Makefile located in the 
directory you are in and change the name from “IPv6-
NAT” to whatever tag you like.  “IPv6-NAT” is the 
default tag. 
 
27. Compile the kernel: 
# make bzImage 
 
28. Make the modules: 
# make modules 
 
29. Install the modules: 
# make modules_install 
 
30. Run install:  
# make install 
 
31. Bring up the grub.conf file and edit it.  Change 
directory to /boot/grub and then bring up grub.conf in 
the editor of your choice. 
 
32. Edit the line just below your kernel label that 
says root=LABEL=/.  Change root=LABEL=/  to say 
root=/dev/hda2. 
*NOTE: this is a configuration issue that may not be 
present on other machines and the hda2 label can 
change from machine to machine.  This change 
specifically sets up the kernel for the TPE. 
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33. Reboot and select the NAT kernel from the grub 
list. 
 
34. Check network connectivity through an IPv4 ping 
 
/* NAT SETUP */ 
 
35. Once logged in, bring up a terminal window 
 
36. Issuing the following commands will setup both 
network interfaces.  The global addresses may be 
changed, but the subnet of the internal computers must 
be the same. 
# ifconfig eth0 inet6 add 2003::1/64 
# ifconfig eth1 inet6 add 2004::1/64 
 
37. Setup the user-space ip6tables: 
# ip6tables -t nat -A POSTROUTING -o eth1 -j SNAT --
to-source 2004::1 
 
This assumes the same topography as the IPv6 testbed. 
 
38. Turn on forwarding: 
# sysctl –w net.ipv6.conf.all.forwarding=1 
 
39. Verify IPv6 network connectivity through an IPv6 
ping  
 
40. NAT is now ready and functioning.  All messages 
sent from the Client will be translated before being 
forwarded to the server, so that the server only sees 
the translated address. 
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